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Motivation

Figure: Training Data

Figure: Prediction: Priority Road, Confidence
100.0%

Language Models as Reasoners for Out-of-Distribution Detection 4



OOD Detection Logical OOD Language Models as Reasoners Results Discussion Conclusion References

Motivation

Figure: Training Data

Figure: Prediction: Priority Road, Confidence
100.0%

Language Models as Reasoners for Out-of-Distribution Detection 4



OOD Detection Logical OOD Language Models as Reasoners Results Discussion Conclusion References

OOD Detection

▶ DNNs make high-confidence errors on OOD data
▶ In safety critical applications: OOD detection crucial

Formal
▶ Classifier f : X → Y maps inputs to per-class probabilities
▶ Detector Df : X → R maps inputs to outlier scores
▶ Detection: apply threshold

Baseline
▶ Use (negative) maximum softmax probability (MSP) of f [1]
▶ For multiple classifiers f1, ..., fn: take average
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OOD Detection with Logical Reasoning

Perception

▶ Several DNNs f1, ..., fn detect
human-understandable attributes

Reasoning

▶ First-Order Logic Knowledge base
▶ E.g.: ∀x stop(x) → red(x) ∧ octagon(x)
▶ If any constraint violated → OOD
▶ Otherwise: average MSP over all DNNs

blue
octagon
stop

K. Kirchheim, T. Gonschorek, and F. Ortmeier, “Out-of-distribution detection with logical reasoning,” in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, 2024, pp. 2122–2131

Language Models as Reasoners for Out-of-Distribution Detection 7



OOD Detection Logical OOD Language Models as Reasoners Results Discussion Conclusion References

OOD Detection with Logical Reasoning

Perception

▶ Several DNNs f1, ..., fn detect
human-understandable attributes

Reasoning

▶ First-Order Logic Knowledge base
▶ E.g.: ∀x stop(x) → red(x) ∧ octagon(x)
▶ If any constraint violated → OOD
▶ Otherwise: average MSP over all DNNs

blue
octagon
stop

K. Kirchheim, T. Gonschorek, and F. Ortmeier, “Out-of-distribution detection with logical reasoning,” in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, 2024, pp. 2122–2131

Language Models as Reasoners for Out-of-Distribution Detection 7



OOD Detection Logical OOD Language Models as Reasoners Results Discussion Conclusion References

OOD Detection with Logical Reasoning

Perception

▶ Several DNNs f1, ..., fn detect
human-understandable attributes

Reasoning

▶ First-Order Logic Knowledge base
▶ E.g.: ∀x stop(x) → red(x) ∧ octagon(x)
▶ If any constraint violated → OOD
▶ Otherwise: average MSP over all DNNs

blue
octagon
stop

K. Kirchheim, T. Gonschorek, and F. Ortmeier, “Out-of-distribution detection with logical reasoning,” in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, 2024, pp. 2122–2131

Language Models as Reasoners for Out-of-Distribution Detection 7



OOD Detection Logical OOD Language Models as Reasoners Results Discussion Conclusion References

Traffic Sign Classification (GTSRB) [3]

Knowledge Base

▶ One constraint for each class: e.g.
∀x stop(x) → red(x) ∧ octagon(x)

Results
▶ Cuts SOTA error rate by ≈ 75%

Figure: GTSRB

Figure: OOD Data
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Large Language Models (LLM) as Reasoners

▶ LLM recent breakthrough in Natural Language Processing [4], [5]
▶ Creating and maintaining formal knowledge base is cumbersome
▶ LLMs possess extensive knowledge about the world
▶ Can be given instructions in natural language
▶ Can we use LLMs instead of a formal knowledge base?
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  Template blueThere is a  stop sign. Its shape is  octagon

  Instructions

Prompt

.

 

Neural
Networks

 

Input/
Output

  (Optional) KB

Your task is to ... 

Stop signs are red. The shape of ...

  Outlier Score

  Explanation

0.95

Stop signs are
not blue. 

blue stop octagon

LLM
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Traffic Sign Classification (GTSRB) [3]

▶ Attributes: Sign Type, Color, Shape
▶ Test against OOD data from 5 unrelated datasets
▶ Average results over 10 training runs

Variants
▶ Naive LLM ("Is this OOD? Yes/No")
▶ Naive LLM + in-context domain knowledge
▶ LLM (with MSP as outlier scores)
▶ LLM + in-context domain knowledge
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Traffic Sign Classification (GTSRB) [3]

DETECTOR AUROC ↑ AUPR-IN ↑ AUPR-OUT ↑ FPR95 ↓

MSP [1] 99.04 ± 0.07 98.35 ± 0.14 99.29 ± 0.05 2.54 ± 0.15
EBO [6] 99.03 ± 0.11 98.76 ± 0.14 99.08 ± 0.12 2.26 ± 0.27
MaxLogit [7] 99.01 ± 0.11 98.73 ± 0.14 99.07 ± 0.12 2.29 ± 0.27
Entropy [8] 99.15 ± 0.07 98.64 ± 0.13 99.33 ± 0.06 2.46 ± 0.15
ReAct [9] 99.04 ± 0.10 98.77 ± 0.13 99.08 ± 0.12 2.21 ± 0.24
Mahalanobis [10] 99.70 ± 0.02 99.40 ± 0.06 99.83 ± 0.01 1.11 ± 0.05
ViM [11] 96.96 ± 0.08 95.95 ± 0.10 99.75 ± 0.02 6.08 ± 0.16
Ensemble [12] 99.77 ± 0.03 99.58 ± 0.05 99.86 ± 0.01 0.99 ± 0.07
LogicOOD [2] 99.85 ± 0.01 99.74 ± 0.02 99.92 ± 0.01 0.60 ± 0.04

Naive Mistral 7B 50.42 ±0.82 40.72 ±2.60 78.54 ±0.24 100.00 ±0.00
Nave Mistral 7B + KB 62.45 ± 1.39 77.85 ± 0.82 82.66 ±0.45 100.00 ±0.00
Mistral 7B 95.82 ± 0.07 84.73 ± 0.47 98.17 ± 0.03 5.15 ± 0.11
Mistral 7B + KB 99.85 ± 0.01 99.74 ± 0.02 99.92 ± 0.01 0.60 ± 0.04
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Other Language Models?

Tested Models
▶ Llama3 7B
▶ Gemma 7B
▶ Mistral 7B (best performance)
▶ Mixtral 8x7B [13]

Findings

▶ Naive approach usually does not outperform random guessing
▶ In-context domain knowledge usually provides performance increase
▶ Larger models do not necessarily provide better performance
▶ Results highly dependent on details of prompt
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Fruits Dataset

▶ Attributes: Fruit Type, Color
▶ Domain knowledge e.g.: "All cherries are red"
▶ 5 OOD Datasets, averaged over 10 training runs

Findings

▶ LogicOOD: state-of-the-art
▶ Naive approach outperforms random guessing
▶ However: no LLM improves performance over baseline
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Advantage: Explainability

▶ Raw outlier score often not informative
▶ LLMs can provide human-understandable

explanations

▶ Example observation: white, circle, go left or
straight Figure: Normal go-left-or-straight sign
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Advantage: Explainability

▶ Raw outlier score often not informative
▶ LLMs can provide human-understandable

explanations
▶ Example observation: white, circle, go left or

straight Figure: Normal go-left-or-straight sign

Based on the provided background knowledge, a ’go left or
straight’ sign is expected to be blue in color. However,
the observation states that the sign is white in color,
which is not in line with the expected behavior.
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Advantage: Bias Mitigation

▶ Extensive background-knowledge from
Internet can help to reveal bias in
dataset

[...] the observation
of a yellow cherry is not
unusual or anomalous, as
yellow is a typical color
for cherries.

Figure: Rainier Cherries
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Advantage: Flexibility

Provided in-context knowledge usually improves results
▶ Knowledge base does not have to be complete
▶ Can contain contradictions
▶ Constraints can be easily added or removed
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Limitation: Resource Requirements

▶ Advances in algorithms, hardware, quantization: faster LLM inference
▶ Still ≈ 1.6s per input for 7B Model on Nvidia A100 (fp16)

Possible Mitigation Strategies

▶ Smaller, domain specific LLMs
▶ Precompute all possible observations
▶ Wait for algorithmic/hardware improvements
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Limitation: Hallucinations
▶ Detected: red, square-shaped, no-trucks sign

{"score": 0.3}
Explanation: Although the color of the sign is
consistent with the given knowledge base, the shape
being ’square’ is not a valid shape for a ’no trucks’
sign according to the provided background knowledge.
However, since all observations are assumed to be correct
and not misreported, it is possible that there is a new
type of traffic sign with a square shape and ’no trucks’
meaning that is not included in the given knowledge base.
Therefore, the probability of anomaly is relatively
low, as the sign’s color is still consistent with the
knowledge base.
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Conclusion

▶ Domain constraints can be formulated in natural language → user-friendly
▶ Explanations in natural language
▶ Can be as effective as formal knowledge bases

Possible Future Research Directions
▶ In-context examples?
▶ Multimodality?
▶ Combination with RAG for very large or evolving databases?
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