
Otto-von-Guericke-University

Magdeburg

Master’s Thesis

Towards Introspective Artificial Intelligence

Self-Assessment of Visual
Recognition Systems based on

Attribution

Konstantin Kirchheim

Supervisor
Prof. Frank Ortmeier
(OvGU Magdeburg)

Supervisor
Prof. Sebastian Zug

(TU Bergakademie Freiberg)

December 9, 2019

Abstract

Convolutional Neural Networks achieve state of the art results in various visual
recognition tasks like object classification and object detection. While CNNs
perform surprisingly well, it is difficult to retrace why they arrive at a certain
prediction. Additionally, they have been shown to be prone to certain errors.
As CNN are increasingly deployed into physical systems - for example in self
driving vehicles - undetected errors could result in catastrophic consequences.
Approaches to prevent this include the usage of attribution based explanation
methods to facilitate an understanding in the systems decision in hindsight, as
well as the detection of recognition errors at runtime, called self-assessment.
Some state-of-the-art self-assessment approaches aim to detect anomalies in the
activation patterns of neurons in a CNN.

This work explores the usage of attribution based explanations for self-
assessment of CNNs. We build multiple self-assessment models and evaluate
their performance in various settings. In our experiments, we find that, while
self-assessment based on attribution does not outperform self-assessment based
on neural activity on its own, it always surpasses random guessing. Further-
more, we find that self-assessment models using neural activation patterns as
well as neural attribution can in some cases outperform models which do not
consider attribution patterns. Thus, we conclude that it might be possible to
improve self-assessment models by including the explanation of the model into
the assessment-process.

Contents

Notation xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Existing Approaches . 2

1.3 Proposed Approach . 3

1.4 Scope of this Thesis . 3

1.5 Structure of this Thesis . 3

2 State of the Art 5

2.1 Convolutional Neural Networks 5

2.1.1 Convolutional Layers . 6

2.1.2 Flattening . 7

2.1.3 Fully Connected Layers 7

2.2 Transfer Learning . 8

2.3 Ensembles Methods . 9

2.3.1 Static . 10

2.3.2 Dynamic . 11

2.3.3 Convolutional Ensembles 12

2.4 Attribution based Explenations 12

2.4.1 Occlusion Method . 14

2.4.2 Saliency Maps . 14

2.4.3 Class Activation Maps . 15

2.5 Reasons for Image Recognition Failures 16

2.5.1 Ordinary Images . 17

2.5.2 Open-Set Images . 18

2.5.3 Malicious Images . 19

2.6 Self-Assessment . 20

2.6.1 Output Based . 21

2.6.2 Input Based . 22

2.6.3 Intermediate Based . 22

2.6.4 Context Based . 23

2.6.5 Training with an “Other” Class 23

v

vi CONTENTS

3 Attribution based Self-Assessment 25
3.1 Concept . 25

3.1.1 Activation . 27
3.1.2 Attribution . 29

3.2 Framework . 32
3.2.1 Data Acquisition . 32
3.2.2 Feature Extraction . 33
3.2.3 Self-Assessment Model . 34

3.3 Modeling . 36
3.3.1 Data Acquisition . 37
3.3.2 Feature Extraction . 37
3.3.3 Self-Assessment Modell 40

4 Implementation 45
4.1 Convolutional Neural Networks 45

4.1.1 Training Dataset . 45
4.1.2 Convolutional Base Models 46
4.1.3 Convolutional Ensembles 46

4.2 Self-Assessment . 48
4.2.1 Framework . 48
4.2.2 Demo . 51

4.3 Development . 51

5 Evaluation 53
5.1 Datasets . 54

5.1.1 ImageNet 2017 . 54
5.1.2 ImageNet-A . 54
5.1.3 Fooling Images . 54
5.1.4 ImageNet 2010 OpenSet 55
5.1.5 Mix Dataset . 55

5.2 Convolutional Neural Networks 55
5.2.1 Evaluation Methodology 55
5.2.2 Results . 56

5.3 Self Assessment . 60
5.3.1 Evaluation Methodology 61
5.3.2 ImageNet 2017 . 62
5.3.3 ImageNet-A . 67
5.3.4 Fooling Images . 72
5.3.5 ImageNet 2010 OpenSet 74
5.3.6 Mix Dataset . 78

5.4 Discussion . 85
5.4.1 Comparison to other Approaches 85
5.4.2 Attribution based Self-Assessment 86
5.4.3 Comparison of Recognition Systems 87

CONTENTS vii

6 Conclusion 89
6.1 Summary . 89
6.2 Limitations . 91

6.2.1 Reproducibility Considerations 91
6.2.2 Self-Assessment Model . 92
6.2.3 Security Considerations 93

6.3 Future Work . 95
6.3.1 Future Work on Convolutional Ensembles 95
6.3.2 Future Work on Self-Assessment 96

A Alternative Clustering Algorithms 107
A.1 K-Means . 107
A.2 Nearest Class Mean . 107
A.3 Affinity Propagation . 109

B Random Forrest 111
B.1 Training . 111
B.2 Results . 111

Acronyms 115

List of Figures

2.1 Convolutional Feature Embedding 6

2.2 Exmaple Activation-Maps . 8

2.3 Treansfer Learning . 9

2.4 Mixture of Experts Architecture 11

2.5 Convolutional Ensemble Architecture 13

2.6 GradCAM Image . 16

2.7 Natural Adversarial Examples . 18

2.8 Adversarial Examples . 19

2.9 Fooling Images . 20

2.10 Overview of Self-Assessment Approaches 21

3.1 Proposed Self-Assessment Approach 27

3.2 Activation Similarity . 28

3.3 Class Activation Clusters . 29

3.4 Relevance Similarity . 30

3.5 Class Attribution Clusters . 31

3.6 Proposed Framework . 32

3.7 Created Self-Assessment Models 36

3.8 Mean Activation and Mean Relevance 39

3.9 Example Feature Space . 41

3.10 Example Cluster Centers . 42

3.11 Example Histogram and PDF . 42

3.12 Example Weibull CDF . 44

3.13 Example Probability Model . 44

4.1 Accuracy and Loss during Training 48

4.2 ConSemble Architecture . 49

4.3 Framework Implementation . 50

4.4 Demo Application . 52

5.1 Class-Specific Accuracy . 57

5.2 Intersetion Errors . 58

5.3 Vgg19: ROC for the ImageNet validation set 63

ix

x LIST OF FIGURES

5.4 Vgg19: F1 curves for the ImageNet validation set 64
5.5 Inception v3: ROC for the ImageNet validation set 64
5.6 Inception v3: F1 curves for the ImageNet validation set 65
5.7 Xception: ROC for the ImageNet validation set 66
5.8 Xception: F1 curves for the ImageNet validation set 67
5.9 ConSemble: ROC for the ImageNet validation set 68
5.10 ConSemble: F1 curves for the ImageNet validation set 68
5.11 Vgg19: ROC for the ImageNet-A 69
5.12 Inception v3: ROC for the ImageNet-A 70
5.13 Xception: ROC for the ImageNet-A 70
5.14 ConSemble: ROC for the ImageNet-A 71
5.15 Vgg19: Accuracy curves for the Fooling Images 73
5.16 Inception v3: Accuracy curves for the Fooling Images 74
5.17 Xception: Accuracy curves for the Fooling Images 75
5.18 ConSemble: Accuracy curves for the Fooling Images 75
5.19 Vgg19: Accuracy curves for the ImageNet 2010 OpenSet 76
5.20 Inception v3: Accuracy curves for the ImageNet 2010 OpenSet . 77
5.21 Xception: Accuracy curves for the ImageNet 2010 OpenSet . . . 77
5.22 ConSemble: Accuracy curves for the ImageNet 2010 OpenSet . . 78
5.23 Vgg19: ROC for the Mix Dataset 79
5.24 Vgg19: F1 curves for the Mix Datase 80
5.25 Inception v3: ROC for the Mix Dataset 81
5.26 Inception v3: F1 curves for the Mix Datase 81
5.27 Xception: ROC for the Mix Dataset 82
5.28 Xception: F1 curves for the Mix Datase 83
5.29 ConSemble: ROC for the Mix Dataset 83
5.30 ConSemble: F1 curves for the Mix Dataset 84

6.1 Class Score Histogram . 94

A.1 ROC for various class centers . 108
A.2 Accuracy for various class centers 108

List of Tables

2.1 CNNs provided by Keras . 13
2.2 Types of images causing recognition failures 17

4.1 Activation- and Attribution-Maps 46
4.2 Hyperparameters of ConSemble 47

5.1 Dataset Overview . 54
5.2 Mix Dataset . 55
5.3 Top-1-Accuracy . 57
5.4 Top-5-Accuracy . 57
5.5 Intersection Errors . 58
5.6 Introduced and corrected errors 59
5.7 Estimated Relevance of Base-Models 60
5.8 Aggregated Results . 85

A.1 Aggregated Results for NCM . 109
A.2 Aggregated Results for Affinity Propagation 110

B.1 Aggregated Results for Random Forrest 112

xi

Notation

ŷ Label assigned to an instance

y True label of an instance

Φ(x) Embedding function, maps input x to a vector

c(x) Decision function of a classifier

h(x) Hypothesis of a classifier

Rc(x) Relevance of x for output neuron c

Sc(x) Output of neuron c for input x

A tensor containing the activation of the neurons of a certain layer

Ak the kth activation-map in tensor A

Ak
ij the value at position (i, j) in the kth activation map in tensor A

xiii

Chapter 1

Introduction

Fuelled by the exponential increase of available computational power (coupled
with falling costs of hardware) as anticipated by Moore’s law, and the collection
of vast amounts of data, the use of machine learning algorithms has proliferated
in recent years. It is expected to become ubiquitous in the future. Possible ap-
plications span every aspect of human life, including health care, manufacturing,
education, financial modeling, policing, marketing, and warfare [34]. Especially
when coupled with physical components in so-called Cyber-Physical Systems,
these digital systems have the potential to precipitate catastrophic events in the
physical world that could inflict massive damage to the economy, the environ-
ment, and society in general.

An essential technology in the area of artificial intelligence is Neural Networks, a
machine learning approach loosely inspired by the functioning of biological neu-
rons [23]. Neural network-based machine learning models constitute the state-
of-the-art for tasks like natural language processing [15] and speech recognition
[25]. In recent years, a specific neural network architecture, called Convolu-
tional Neural Networks, has excelled the state-of-the-art in many applications,
especially in the field of computer vision, which is concerned with tasks like
recognizing or localizing objects in images [39].

1.1 Motivation

CNN-powered applications are progressively deployed in safety-critical environ-
ments in the physical world, for example, in autonomous vehicles [22]. However,
even though CNNs outperform traditional computer vision approaches, they
are prone to certain errors. Recent examples of recognition failures with catas-
trophic consequences include crashes of self-driving cars that received broad
coverage by the media [66, 68].

There are several possible reasons for the failures of visual recognition systems.

1

2 1.2. EXISTING APPROACHES

CNNs are usually trained to recognize a certain set of object-types. In the real
world, however, they are constantly confronted with images of objects of pre-
viously unseen classes or changing perception conditions [6]. This problem is
termed the Open-World problem. Furthermore, Szegedy et al. [64] first demon-
strated that it is possible to inject specially crafted perturbations into a formerly
correctly classified image. While these perturbations are almost imperceptible
to the human eye, they trick CNNs into making a wrong prediction with high
confidence. The methods to craft such malicious input are called adversarial
attacks. It has been shown that they can be employed to deceive systems in the
physical world [38]. Thus, CNN-based visual recognition systems work surpris-
ingly well but are prone to fail unexpectedly and apparently for no reason. Some
people argue that these pathologies of CNNs are inherent to their architecture
[21].

1.2 Existing Approaches

Since 2010, there have been attempts to formally verify properties of neural
networks [48], for example, to prove their robustness to adversarial attacks [36].
Despite remarkable advancements in this field, it remains unfeasible to apply
its methods to complex visual recognition tasks at present. First of all, this
is due to the vast number of parameters in contemporary CNNs. State-of-
the-art methods demonstrated the verification of some formal constraints - like
invariance to certain distortions - on models with about 1 million parameters
[36]. However, the amount of parameters in modern CNNs tends to be one to two
orders of magnitude larger [58]. Secondly, there is usually no formal description
of the classes of objects that should be recognized - for example, pedestrians -
which a formal proof would require. This implies that the possibility of failures
of these systems can not be eliminated in practice.

In general, there are two approaches to deal with these shortcomings of neural-
network-based recognition systems: The “optimistic” approach aims to improve
or harden the systems in order to decrease the likelihood of errors [24]. The idea
is that if systems become sufficiently good at their task - for example, if they
surpass human-level performance - the remaining risk of failure can be tolerated.
For instance, if autonomous vehicles would cause significantly fewer accidents
than human drivers, one could argue that these cars drive sufficiently good, and
the risk of failure should not impede the deployment in real-world applications.
The more “pessimistic” approach, on the other hand, acknowledges that there
is always a substantial risk of failure, and aims to enable the systems to fail
gracefully, i.e., to detect their errors and to either handle them or to fall back
to a safe state [22, 26, 70, 13]. For instance, an autonomous vehicle that detects
that it is unable to recognize an obstacle on the road could prompt a human
operator to take control. This approach is called self-assessment, introspection

CHAPTER 1. INTRODUCTION 3

[13] or meta-recognition [53]. Both of the approaches mentioned above are not
necessarily disjointed and subject to contemporary research.

Additionally, methods have been developed that aim to explain the decisions of
CNNs in hindsight. They can be used to understand how a recognition system
makes its decisions and thus facilitates the understanding of its biases. Such
explanation methods can help to detect if the model is, for example, racially-
biased before it is s deployed into the physical world [59].

1.3 Proposed Approach

Explanation methods are, to the best of our knowledge, not used to prevent
or detect system failures at runtime. We suspect that it is possible to harness
CNN explanations to detect failures of visual recognition systems at runtime.
The goal of this thesis is the development of a framework that allows creating
self-assessment models that can be used to test this proposition.

1.4 Scope of this Thesis

In this section, we will outline the limitations on the scope of this thesis. Since
this work focuses on visual recognition systems for image classification, we will
not consider other tasks - like natural language processing - where this ap-
proach could be applied as well. Furthermore, even though attribution-based
explanations could potentially be used to support the estimation of arbitrary
error metrics, this possibility will not be examined. We will only consider the
prediction of classification errors, and not, for example, errors regarding the lo-
calization of an object in an image. We limit the examination of the idea to use
explanations for the detection of failures to gradient-based attribution meth-
ods. One should keep in mind that these explanation methods only constitute
a fraction of existing explanation approaches for CNNs. The goal of this thesis
is explicitly not to design a failure prediction model that excels state-of-the-art
but to design a model that meets the demand to gather evidence regarding the
proposition. Contemplating the imposed resource limitations in terms of avail-
able time and compute, this work can merely serve as a proof-of-concept for the
proposed approach.

1.5 Structure of this Thesis

In the following chapter, we will first review the literature on background infor-
mation and existing approaches. Afterward, in Chapter 3, we will explain the
concept in detail and bring forward arguments to support the proposition. Based
on the concept, we propose a framework that allows developing self-assessment
models based on attribution-based explanations. We then utilize the framework

4 1.5. STRUCTURE OF THIS THESIS

to design a self-assessment model. In Chapter 4, we will provide an overview
of the considered recognition systems and the implementation of the framework
and the self-assessment model. Finally, we will conduct and evaluate experi-
ments regarding our hypothesis and draw conclusions (Chapter 5). The thesis
closes with a discussion of the flaws and limitations of the presented approach
and an outlook on future research (Chapter 6).

Chapter 2

State of the Art

In this chapter, the literature relevant to the concept proposed in Chapter 3
will be presented. The survey will focus on the basic building blocks of CNNs,
transfer learning, ensemble classifiers, explanation methods, reasons for failures
in visual recognition systems, and approaches for the prediction of such failures.
It will be briefly explained how CNNs work in general, and how they can be
combined to increase their predictive performance. Afterward, the black-box
character of such systems will be emphasized, and attribution based methods
that aim to explain particular classifications results will be presented. Then,
common reasons for classification system failures will be introduced, and even-
tually, methods to detect such misclassifications will be presented.

The most influence on this thesis had the work of W. Scheirer [53, 51, 52] and A.
Bendale [7, 6] on failure detection and the open-set risk, D. Hendrycks [31, 30, 29]
on reasons for images failures and the evaluation of robustness for CNNs and
Selvaraju et al. on the GradCAM explanation method [55].

2.1 Convolutional Neural Networks

Convolutional Neural Networks are a particular neural network architecture in-
vented in 1989 by Y. LeCun, that (later) attracted attention in the scientific
community by significantly outperforming the state-of-the-art in image classifi-
cation tasks [23]. As of today, this architecture is widely used and still superior
to “classic” approaches in the field of computer vision.

Common CNN architectures are built from multiple layers, with alternating
convolutional and subsampling layers1 in front (close to the input) followed by
FC layers in the back (close to the output). The convolutional and subsampling
layers serve as dimensionality reducing feature extractors, while the fully con-
nected layers perform the classification based on the extracted features. The

1Subsampling: e.g., Average Pooling or Max Pooling

5

6 2.1. CONVOLUTIONAL NEURAL NETWORKS

basic building blocks of a common CNN can be found in Figure 2.1. Each of
them will be explained in the following.

x A ϕ(x)

Convolutions/SubsamplingInput Flatten

Figure 2.1: Sketch of the architecture of a typical convolutional feature embed-
ding by convolutions and subsampling.

2.1.1 Convolutional Layers

RGB images are usually represented as three h×w-dimensional matrices, where
h is the image’s height and w the image’s width, and each matrix represents
a different color channel - red, green and blue respectively. Informally, such
a multidimensional array is called a tensor. Each convolutional (or subsam-
pling) layer takes a number of matrices (i.e., a tensor) as input, performs some
operation, and outputs a (possibly higher) number of smaller matrices. This
operation is usually the calculation of the weighted sum of all input neurons
(a linear mapping which can be expressed as matrix multiplication), followed
by a non-linear activation function, which calculates the final activation of the
neuron. A common non-linear activation function is the so-called rectified linear
unit (ReLU), which is defined as

ReLU(x) = max(0, x) (2.1)

Each of the resulting matrices - also called feature-maps or activation-maps2 -
can be seen as a maps that indicates the presence of a certain kind of feature.
When stacking multiple convolutional layers, these detected features become
more and more abstract with increasing depth of the network. While the first
layers detect edges or color blobs, the deeper layers detect higher-level concepts
[69]. The idea of learning hierarchical representations of data with increasing
degrees of abstractions is a recurring theme in Machine Learning and the essence
of Deep Learning [54].

2Later on, we will extract features from these maps. To prevent confusion, we will refer to
these maps as activation-maps.

CHAPTER 2. STATE OF THE ART 7

The sequential convolutions and subsampling of a CNN map the input image
to a tensor A, which consists of k activation maps. This tensor contains the
activation of each neuron in the last convolutional layer. When referring to the
kth activation map, we write Ak.

2.1.2 Flattening

Before the A can be fed into the dense layer, it is usually flattened, as the dense
layers handle vectors. This flattened version of the activation-maps is called
the embedding vector. The embeddings vector of an image x is denoted ϕ(x),
where ϕ is called embedding function of a CNN. Contemporary architectures,
e.g., [11, 63] incorporate a global average pooling layer, which reduces each of
the k activation-maps to a scalar value, resulting in a k dimensional vector. The
global average pooling is calculated as

y =

y1
...
yk

 =
1

Z

∑
i

∑
j

Ak
ij (2.2)

where Z is the number of pixels in the activation-map.

2.1.3 Fully Connected Layers

The classification is then usually carried out by one or more dense layers, which
calculate the final prediction with a function c of the embedding vector. The
prediction h(x) of the CNN is thus

h(x) = c(ϕ(x)) (2.3)

The final layer, when trained for N classes, usually contains N neurons and uses
the softmax activation [3] which is defined as:

σ(z)j =
ezj∑N
n=1 e

zn
for j ∈ 1, ..., N (2.4)

This activation function scales the net-inputs (i.e. the weighted sum of the
inputs of a neuron) z of the N output neurons so that they sum up to one.
Each output can then be interpreted as a probability for exactly one class.

For instance, consider the Xception architecture trained on the large ImageNet
image dataset as provided by the deep learning library Keras, and a 299× 299
RGB image which is represented as 268,203 values ∈ [0, 1] [11, 14, 12]. The
convolutional layers extract 2048 activation-maps of size 10×10, from which the
final 2048 dimensional embedding vector is calculated applying global average
pooling. A single FC output layer of 1000 neurons with softmax activation
performs the classification. Some example activation-maps for the Vgg19 CNN
are depicted in Figure 2.2.

8 2.2. TRANSFER LEARNING

Figure 2.2: The first 7× 7 pixel activation-maps Ak ∈ R7×7 of the Vgg19 archi-
tecture for an example image. It is not trivial, if not even unfeasible to transfer
the semantic of these activation-maps into human comprehensible concepts.

2.2 Transfer Learning

Training deep neural networks with many parameters is time and energy-
consuming and can thus be expensive [61]. Additionally, DNNs require vast
amounts of training data [23]. Transfer learning, in general, describes the idea
to store knowledge learned in one domain and to transfer it to another [46].
When applied to DNNs, transfer learning bears the potential to reduce the re-
quired amount of time, energy, and training data that has to be invested in
the training. In the following, the most common approach will be described.
As elaborated in the previous chapter, a CNN can usually be divided into two
major components: a convolutional part (plus flattening) which calculates the
embedding vector Φ(x), and a classifier c that calculates the systems output
h(x) = c(Φ(x)). The concept is depicted in Figure 2.3. The basic idea for
transfer learning is to use the convolutional layers as generic mid-level feature
extractors that can be trained on one dataset, and only (re-)train the classifier
c for other datasets. Transfer learning can also be used to adapt an existing
classifier to changes in the underlying data distribution, for example, lighting
conditions or viewpoint variations by fine-tuning only the higher layers [46].

Other approaches, for example, in the field of medical image analysis for auto-
mated diagnosis, replace the FC layers with other classifiers that are not based
on neural networks, for example Support Vector Machines [1]. Apart from con-
ventional supervised machine learning approaches, clustering methods can be

CHAPTER 2. STATE OF THE ART 9

x

Embedding
Φ(x)

Classifier
c(Φ(x))

h(x)

Figure 2.3: ϕ(x) embeds the input x into a lower dimensional vector space. This
embedding vector is then fed to a classifier c, which outputs the hypothesis h(x).
Transfer learning can be performed by retraining only the weights of c, while
keeping the weights of ϕ constant.

used to classify images based on the extracted features [42, 41], most notably
k-Nearest-Neighbor or Nearest Class Mean. An advantage of clustering-based
methods is that adding or removing cluster centers, or adjusting the existing
ones is often computationally cheaper than to retrain the entire classifier. This
facilitates adding new classes to the classifier.

2.3 Ensembles Methods

A simple yet effective approach to increase the performance of a classification
system is to combine multiple classifiers into a single, more powerful recognition
system [27]. In the case of neural networks, ensemble methods are also reffed to
as Committee Machines [28]. There exist a plethora of ensemble methods that
can loosely be grouped into static and dynamic approaches. This section aims to
provide a brief overview of different ensemble techniques. However, we will only
introduce the mechanisms that are relevant in the context of this thesis. Other
popular ensemble methods - for example, Boosting - will not be considered.

In general, many ensemble techniques calculate the final prediction as a
weighted linear combination of the original predictions. According to [23], some
of them can also be interpreted as a regularization technique. Assuming that

1. the base classifiers make independent errors and

2. the base classifiers predictions are correct at least half of the time

it can be mathematically proven that the overall error of an ensemble will de-

10 2.3. ENSEMBLES METHODS

crease monotonically with the number of incorporated classifiers, and theoreti-
cally becomes zero if an infinite amount of classifiers is used [27].

2.3.1 Static

Static approaches combine the output of the individual classifiers and do not
include the input into their calculation.

2.3.1.1 Averaging

The averaging ensemble approach calculates a weighted linear combination of
the response of all classifiers c as follows:

h(x) =
N∑
i=1

αici(x) (2.5)

where α is the weight of a classifier. For instance, the mean averaging ensemble
approach assigns the same weight α = 1

N to each classifier, where N is the
number of classifiers:

h(x) =
N∑
i=1

1

N
ci(x) =

1

N

N∑
i=1

ci(x) (2.6)

2.3.1.2 Majority Voting

Voting based ensemble methods calculate the final classification by determining
which class was predicted by the majority of the base models. There are several
types of majorities, for example, unanimous voting (100 %), simple majority
voting (more than 50 %) or plurality voting (relative majority). The behavior
of such ensembles in the case that no consensus could be achieved may differ.
An option is, for instance, to reject the input.

From a safety perspective, majority voting has the advantage that this type of
ensemble method can, by design, not introduce new errors that have not been
made a majority of the base models. The averaging ensemble, on the other hand,
does not ensure this [67]. However, the voting-based ensemble is also unable to
correct errors that have been made by the majority of the base models, while
the majority voting is.

2.3.1.3 Bootstrap Aggregating

Bootstrap Aggregation, also referred to as Bagging, generates random subsets
of the training data (uniform with replacement) and trains a different classifier
of the same type on each. For classification tasks, the final prediction is then

CHAPTER 2. STATE OF THE ART 11

Input x

Embedding
Φ1(x)

Classifier
c1(Φ1(x))

Embedding
Φ...(x)

Classifier
c...(Φ...(x))

Embedding
ΦN (x)

Classifier
cN (ΦN (x))

Gate
a(x)

∑N
i=1 ai(x)ci(Φi(x))

Output hf (x)

Figure 2.4: Architecture of a Mixture of Experts Model using CNNs. The
output of the classifiers c1, ...cN is aggregated in a weighted linear combination
to obtain the final classification result.

obtained by a voting mechanism, as presented in 2.3.1.2. The Dropout regular-
ization [60] for neural networks can be seen as a form of bagging with shared
parameters [23].

2.3.2 Dynamic

Dynamic ensembles also often calculate a weighted linear combination of the
original predictions, but contrary to static ensembles, the assigned weights de-
pend on the input [28]. A typical dynamic ensemble approach is the so-called
Mixture of Experts (MoE). The basic idea is to divide a complex problem into
multiple easier subproblems and to train a classifier for each subproblem. A so-
called gating-function then decides which classifier should be used, or how the
responses of the individual classifiers should be combined to obtain a more ac-
curate prediction. Thereby they follow the divide-and-conquer problem-solving
paradigm [20].

An example MoE approach, called Adaptive Fusion, was proposed in [1]. They
train multiple classifiers for image recognition, and an additional gating net-
work a learns to combine the individual predictions based on a thumbnail of the
image. The resulting calculation is as follows:

h(x) =
K∑
i=1

ai(x)ci(x) (2.7)

The general architecture of MoE approaches is depicted in Figure 2.4.

12 2.4. ATTRIBUTION BASED EXPLENATIONS

2.3.3 Convolutional Ensembles

In 2018, a novel approach for the improvement of the performance of CNNs
for image recognition tasks was developed independently by [3] and [67]. The
approaches have an ensemble like character but do not fully meet the traditional
definition of ensembles. These approaches employ pre-trained convolutional
embedding functions and (can), therefore, be seen as a form of transfer learning.
As they incorporate multiple such convolutional embeddings, the concepts are
also related to ensemble strategies. However, these convolutional ensembles feed
the extracted features into a single classifier and are thereby, strictly speaking,
not ensembles. Thus, we will refer to them as “ConSembles”, a neologism coined
by Wehmeier [67]. In the following, an in-depth explanation of the ConSemble
approach will be provided.

[67] suspects that most of the learning happens in the convolutional layers of a
CNN. Therefore, the inferior performance of some classifiers is not caused by the
FC layer but rather a result of the preceding feature extraction process. It could
be possible that the convolutional layers of some of the base models learned to
extract features that are more representative for some classes than for others,
which would, in turn, allow a classifier to identify instances of these classes with
higher accuracy.

For instance, contemplate the following simplified example: Consider two CNNs,
A and B, with their respective embedding function ΦA(x) and ΦB(x). Let us
assume that A and B were trained to decide whether an image depicts an apple
or an banana. During training, model A learned to make this classification
(primarily) based on the shape, so the embedding function ΦA is essentially
encoding some properties of the shapes detected in x. Model B, in contrast,
(primarily) relies on the color, so its embedding function ΦB essentially encodes
properties of the colors detected in x. For the simple example of oranges and
pears, each characteristic (shape or color) would probably be sufficient to achieve
comparably high accuracy. However, we can anticipate that a ConSemble C that
bases its prediction on both embeddings and is thus provided with more features
will most likely exceed the individual classifiers A and B. A delineation of the
general architecture is depicted in Figure 2.5.

2.4 Attribution based Explenations

State-of-the-art CNNs are highly complex, non-linear systems with a vast
amount of parameters. An overview of the number of parameters for some
example CNNs is given in Table 2.1. Due to this complexity, it is difficult to
explain why a particular input resulted in the obtained response, and CNNs are
often regarded as black-box systems [59]. In regards to this property, CNNs
can be compared to the human brain: even though the behavior of individual

CHAPTER 2. STATE OF THE ART 13

Input x

Embedding
Φ...(x)

Embedding
Φ1(x)

Embedding
ΦN (x)

Classifier
c(Φ1(x),Φ...(x),ΦN (x))

Output h(x)

Figure 2.5: Architecture of a convolutional ensemble. The input x is pro-
cessed by multiple (convolutional) embedding functions Φ1(x), ...,ΦN (x). The
extracted features are then fed into a single classifier c to produce the output
h(x).

neurons is a well-researched topic, the emergence of high-level cognitive abilities
from the vast amount of interconnected neurons remains unclear.

To tackle this problem, several methods that aim to explain the output of
CNNs have been developed. In the following, will focus on attribution-based
explanation methods (also referred to as sensitivity-based, relevance-based or
contribution-based methods) [4]. In general, these kinds of methods aim to ex-

Table 2.1: Instances of different neural network architectures as provided by
Keras [12]. Most of the parameters of the Vgg19 are contained in the FC layers.

Architecture Parameters Depth Year

Vgg19 143,667,240 26 2014

Inception V3 23,851,784 159 2016

Xception 22,910,480 126 2017

plain the decision of a system by estimating the contribution that certain parts
of the input had on the system’s output. Formally, they can be described as
follows [4]: Consider a neural network with input x = [x1, ..., xN] ∈ RN and
output S(x) = [S1(x), ..., SC(x)] ∈ RC where C is the number of output neu-
rons. Given a specific neuron c, attribution-based explanation methods try to
determine the contribution Rc = [Rc

1, ..., R
c
N] ∈ RN of each xi on the neurons

output Sc. When Rc has the same shape as x, Rc is called attribution-map(s)
[4].

14 2.4. ATTRIBUTION BASED EXPLENATIONS

In the case of a CNNs for image classification with one output neuron per class,
Sc denotes the score of class c, which is usually the softmax score (see Equation
2.4), and Rc the contribution of each input - on a pixel or feature level - for the
classifiers score for class c. In some cases, Rc is not calculated directly, but only
estimated. Several methods for estimating relevance exist. Many of them are
based on the assumption that if the classification result is sensitive to a specific
input - i.e., small changes in the input cause significant changes in the system’s
output - this input is relevant for the classification. Highlighting relevant input
can, therefore, help to understand the reasons for the classifier’s decision, and
can be seen as an explanation for its prediction [44]. In the following, some ex-
ample methods for relevance estimation will be presented. An extensive survey
of the effectiveness of different gradient-based attribution methods is presented
in [4].

2.4.1 Occlusion Method

The Occlusion Method is the least complex approach to calculate the importance
of a specified input for the prediction. For that reason, they are introduced
here [46]. The idea is simple: to estimate the relevance of some input image,
successively occlude different portions of it (e.g., with gray patches) and observe
the deviations in the classifier’s output. The more the output changes, the more
relevant the occluded input region is for the system’s prediction. A drawback
of this approach is that its computational costs are high compared to other
methods, as it requires several forward passes through the CNN. On the other
hand, it does not require the calculation of gradients and thus no backward
passes for back-propagation. This property makes the method applicable to
systems that are not differentiable.

2.4.2 Saliency Maps

The calculation of saliency maps, as proposed by [57], is a more sophisticated
approach to calculate an attribution-map for the input image. Saliency maps
are, to the best of our knowledge, the first explanation method for CNNs that
harnesses the derivative of the score with respect to the input image. As ex-
plained, CNNs calculate the function h(x). The partial derivative of a function
(i.e., a class score Sc) with respect to an argument of that function (i.e., an
input pixel xij) measures how the function value would change if the argument
did (while all other arguments remain constant). Thus, it can be interpreted as
sensitivity (i.e., Rc) of the output with respect to that input. To express the
sensitivity of the class score with respect to some input pixel, we can write the
following:

Rc =
∂Sc

∂xij
(2.8)

CHAPTER 2. STATE OF THE ART 15

Compared to the Occlusion method, the calculation of a saliency map is com-
putationally cheap, as it required only a single back-propagation pass [57].

2.4.3 Class Activation Maps

The term Class Activation Map refers to an image that highlights the relevant
input regions with respect to a certain class, i.e., an attribution-map Rc. There
is a set of algorithms that can be used to calculate CAMs [71, 55, 10]. They are
based on the following assumption: The activation-maps A of the last convolu-
tional layer of the CNN have the highest level of abstraction that still contains
information about the location of the detected features in x because for example
Flattening or Global Pooling Layers would destroy that information. CAM algo-
rithms propose different methods to estimate the relevance αc of each value in A.
To calculate the CAM Lc(x) for some class c, the activation-maps are weighted
by this relevance, summed up, and passed through the ReLU (see Equation
2.1) function, so that only pixels that have a positive impact are included. The
formal notation of this calculation is given in Equation 2.9.

Lc
ij(x) = ReLU(

∑
k

αck
ij A

k
ij) (2.9)

For example, consider the Vgg19 model with 512 activation-maps of size 7 ×
7. CAM algorithms will generally calculate a relevance αc for each of these
activation-maps. Each map is weighted by the corresponding αc, then all 512
activation-maps are summed, which results in a 7× 7 image. Each value in that
image that is < 0 will then be set to 0. This process results in Lc. In order
to obtain the attribution-map Rc for the input image, Lc is scaled up to match
the size of the original image. Each pixel in the resulting CAM is assumed to
estimate the relevance of the corresponding pixel in the input image.

2.4.3.1 Vanilla CAM

The first method to calculate the relevances αc is referred to as vanilla CAM
[71]. The relevances are estimated by training a linear classifier3. The weights
of this linear classifier are then used as relevance. As this requires retraining
and is not applicable to every network type, the method is severely limited.

2.4.3.2 GradCAM

GradCAM [55] aims to overcome the limitations of vanilla CAM by improving
and generalizing the estimation of the weights. The relevance α of a single pixel

3A linear classifier calculates the result as a linear-combination of the input, i.e. f(x) =
w⊤x.

16 2.5. REASONS FOR IMAGE RECOGNITION FAILURES

(i, j) in an activation-map Ak for the score Sc of class c is calculated as:

αck
ij =

∂Sc

∂Ak
ij

(2.10)

The relevance αck of an activation-map k with respect to class c is then calcu-
lated as a mean over gradients of each activation-map:

αck =
1

Z

∑
i

∑
j

∂Sc

∂Ak
ij

(2.11)

where Z is the (constant) number of pixels in an activation-map Ak. This
means that the weight α of activation-map k with respect to class c is the mean
of the gradients of activation-map Ak with respect to the score Sc for class
c. Note that unlike for vanilla CAM, GradCAM assigns the same weight to
all pixels in an activation-map. This allows calculating a GradCAM for each
classifier whose partial derivatives can be calculated. Like saliency maps, this
approach is computationally cheaper compared to vanilla CAM, as calculating
the gradients can be done via backpropagation and does not require retraining.
An example of a GradCAM is given in Figure 2.6.

Several modifications of GradCAM exist, such as Guided GradCAM [55] or
GradCAM++ [10]. As they do not contribute to the concept of this thesis, they
are considered to be out of scope.

(a) Original (b) Superimposed (c) GradCAM

Figure 2.6: Example GradCAM image from the ImageNet-A dataset [31] and
the Vgg19 [58] architecture.

2.5 Reasons for Image Recognition Failures

The following section will elaborate on reasons for the failure of CNN-based
visual recognition systems. A prominent interpretation of machine learning as
a branch of statistics assumes that the input data is sampled from an unknown

CHAPTER 2. STATE OF THE ART 17

Table 2.2: Types of misclassified Images. Images of known classes that are not
malicious are Ordinary images. Images of unknown classes (which are always
misclassified) are called Open-Set images. Images of known classes that are
intentionally modified to be misclassified are adversarial images. Images of an
unknown class that are malicious (e.g., synthesized for the purpose of being
misclassified) belong into the Fooling category.

Image Type Unknown Class Malicious

Ordinary [31, 29]

Open-Set [7] ✓
Adversarial [24] ✓
Fooling [45] ✓ ✓

probability distribution. The purpose of a machine learning algorithm is to cre-
ate a model that can make accurate predictions for previously unseen samples
that stem from the same distribution [9, 23]. When such systems are deployed
in real-world applications, this assumption is sometimes violated.

For instance, consider a company that trains a CNN on a dataset and then
deploys it into a web application that allows users to upload images for classifi-
cation. Let us assume that the training dataset contains high-resolution images
without blur that depict a single object of interest in the center of the image.
The images uploaded by the users may stem from smart-phones with lower res-
olution, blur, and possibly multiple uncentered objects. Under such conditions,
severe deterioration in performance can be expected. Thus, a general reason for
failures in image recognition systems are drifts in the underlying data distribu-
tion.

The following section approaches the problem from a practical perspective. It
aims to identify types of images that may be encountered in a production en-
vironment and cause a recognition system to fail. We conducted a literature
survey regarding these failures, and loosely grouped them into four classes. An
overview of the categories is provided in Table 2.2. Each category will be intro-
duced in the following.

2.5.1 Ordinary Images

The term ordinary images denotes a class of images for which the model could
have theoretically made a correct prediction, but was unable to do so. We
identified two subtypes that will be introduced in the following.

18 2.5. REASONS FOR IMAGE RECOGNITION FAILURES

2.5.1.1 Natural Adversarial Images

Natural advserarial exmaples are natural images that are difficult to recognize
for CNNs and cause many classifiers to degrade [31]. These images exploit
flaws inherent to contemporary CNN architectures, namely their over-reliance on
color, texture and background cues instead of, for example, the shape of objects.
If we consider the example images given in Figure 2.7 it is apparent which
properties of the image cause the classifier to make its particular prediction.

2.5.1.2 Corrupted Images

Corrupted images are often misclassified [29]. Typical corruptions include dif-
ferent types of noise (gaussian, impulse), blur (motion, defocus) and for example
weather related corruptions like snow, frost, rain or fog.

(a) Stingray (b) Obelisk

Figure 2.7: Examples of natural adversarial images: (a) Stingray, classified as
albatross (87.2 %), and (b) Obelisk, confused with a flagpole (87.7 %) by the
Vgg19 architecture.

2.5.2 Open-Set Images

Image recognition systems are usually designed to recognize objects from a finite
set of classes. In real-world applications, however, systems may be exposed to
objects of classes that have not been part of this set. CNNs with a softmax
output will still predict the object as belonging to some known class, as the
architecture does not allow them to make a prediction outside of their known
class set.

For instance, consider a CNN that was trained to classify images as showing
either a cat or a dog. This classifier will usually have two output neurons whose
values will sum up to one because of the softmax activation function (see Equa-
tion 2.4). If this classifier is presented with an image of a horse, it might output,
for example, that the image depicts a cat or a dog with 50 % probability each.
This prediction is not accurate, as the image depicts neither a cat nor a dog,

CHAPTER 2. STATE OF THE ART 19

so both neurons should ideally output zero percent probability, which is impos-
sible. Even if the net-inputs of the output neurons are small, the softmax will
scale these values up. This example illustrates the inability of softmax-based
recognition systems to make a correct prediction in such cases, a problem that
is referred to as the Open-World Problem or the Open-Set Risk [6, 52]

2.5.3 Malicious Images

Apart from natural images, there are two other categories of images that are
designed to be misclassified with high confidence. We refer to them as malicious
input.

2.5.3.1 Adversarial Images

Visual perception systems, like CNNs, must be invariant to irrelevant variations
of the input in order to work in real-life scenarios [39]. In 2013, however, Szegedy
et al. demonstrated that CNNs could be tricked into misclassifying an image by
injecting specially crafted perturbations that were invisible to the human eye
[64]. They defined adversarial inputs as:

“inputs to machine learning models that an attacker has intentionally
designed to cause the model to make a mistake.” [64]

The findings of their publication gave birth to a research area concerned with
the development of attacks to exploit machine learning models, as well as means
to defend them against adversaries. An example is provided in Figure 2.8.

+ 0.007 × =

Original Adversarial
Perturbations

Adversarial
Image

Panda (57.7%) Gibbon (99.3%)

Figure 2.8: Adversarial Image, as presented by [24]

2.5.3.2 Fooling Images

So-called fooling images are entirely synthetic images created for the purpose
of being misclassified by CNNs. Some example images are provided in Figure
2.9. They were first presented by Nguyen er al. [45], who used an evolutionary
algorithm or gradient ascend to generate images that would maximize the acti-
vation of a certain output neuron.

20 2.6. SELF-ASSESSMENT

We differentiate between fooling images and adversarial images, because a clas-
sifier could theoretically make a correct prediction for an adversarial image de-
picting a known object, but is by design unable to correctly classify a fooling
image as it does not depict any real object. Therefore, in the context of this
thesis, fooling images are more related to the Open-Set problem, even though
they meet the definition of adversarial images given in the previous section.

(a) Broom (96.3 %) (b) Digital Clock (71.4 %)

Figure 2.9: Examples of fooling images classified as (a) Broom or (b) Digital
Clock with high confidence by the Vgg19.

2.6 Self-Assessment

The previously described pathologies that CNNs suffer from - and that might
be inherent to their architecture - present a challenge in safety-critical environ-
ments. A way to mitigate the uncertainty that emerges from the inability to
prevent failure is to detect situations in which the recognition system is likely
to make a false prediction. These methods can be interpreted as confidence
estimation for the prediction - the higher the likelihood of an error, the lower
the confidence.

As described in the previous section, the reason for recognition failures can be
seen as a situation in which the CNN is presented with input that does not
stem from the distribution it was trained on. In fact, the concepts of out-of-
distribution detection and failure detection are closely related [30]. In the con-
text of visual recognition systems, the detection of errors or the estimation of the
likelihood of errors is also referred to as Meta- Recognition [53] or Introspection
[13]. For the remainder of this thesis, however, we will refer to the concept as
self-assessment. In this section, the state-of-the-art for self-assessment of CNN-
based computer vision systems will be presented. The various approaches are
grouped by the data that is involved in the calculation: Output, Input, Interme-
diate Data or Context. An overview is presented in Figure 2.10. Furthermore,
it is possible to train neural networks to reject unknown input by training with

CHAPTER 2. STATE OF THE ART 21

Input

Classifier

Φ(x)

c(Φ(x))

Output

Self-
Assessment-

Module

Performance

Context

[13]

[7, 16]

[26]
[70]

[53, 30]

Figure 2.10: Overview of different self-assessment approaches based on input,
output, intermediate features and context.

an “Other” class.

2.6.1 Output Based

Several publications are concerned with performance prediction-based on the
recognition systems output. Generally, these approaches are called post recog-
nition score analysis.

2.6.1.1 Tresholding Softmax

A straight forward way to reject predictions is to threshold the softmax output
of a classifier. Hendrycks et al. [30] proposed this as a baseline for the detection
of misclassifications, as misclassified instances tend to have lower maximum
softmax scores. However, studies have shown that this method is insufficient
to reliably predict failures, mainly due to properties inherent to the softmax
function, some of which were mentioned earlier [7].

2.6.1.2 Meta-Recognition

In 2011, Scheirer et al. [53] introduced the term ”meta-recognition” to describe
the capability of a system to assess its own predictive performance. They defined
such a system as follows:

“Let X be a recognition system. We define Y to be a meta-recognition
system when recognition state information flows from X to Y , con-
trol information flows from Y to X, and Y analyzes the recognition
performance of X, adjusting the control information based upon the
observations.” [53]

22 2.6. SELF-ASSESSMENT

The idea is to estimation the confidence of a prediction-based on an analysis of
the systems output and extreme value theory, which was later adopted by [7].
Extreme value theory is a branch of statistics that deals with rare events, i.e.,
extreme deviations from the median of probability distributions. Scheirer et al.
analyzed the softmax scores and found that they followed a Weibull distribution.
This allowed them to model the output-score-distribution and to estimate the
probability that a score is an outlier of this distribution.

2.6.2 Input Based

Some self-assessment systems evaluate the input (i.e., the image) in order to
predict if the recognition system will fail. An advantage of input-based self-
assessment systems is that they can be used on any recognition system without
the need for adjustments [70].

An example of such an input-based self-assessment approach proposed by Zhang
et al. is ALERT [70]. The idea is to extract a number of generic appearance
features from the image, using classical feature extraction methods like SIFT,
HOG, GIST, line histograms, local binary patterns, and self-similarity. After-
ward, a Support Vector Machine is trained to predict the performance of the
system for a variety of computer vision tasks such as semantic segmentation,
vanishing point estimation, and camera parameter estimation.

2.6.3 Intermediate Based

Self-assessment methods for CNNs based on intermediate features use neither
the output nor the input of thy system, but usually the activation of some hidden
layer, for example, the penultimate layer.

2.6.3.1 Confidence Estimation Branch

Devries et al. proposed to augment a CNN with an additional confidence esti-
mation branch with one or more dense layers that outputs a scalar confidence
value [16]. This branch is fed with the output of the penultimate layer and
trained in parallel with the prediction branch by modifying the loss function.
The approach applies a threshold to the confidence score to label instances
with low confidence as out-of-distribution.

2.6.3.2 Introspective Perception

The approach called Introspective Perception proposed by Daftry et al. uses
the feature embedding of the input, and trains a Support Vector Machine to
estimate error metrics for various computer vision applications [13].

CHAPTER 2. STATE OF THE ART 23

2.6.3.3 OpenMax

The concept of the OpenMax Layer as proposed by Bendale et al. [7] is derived
from the meta-recognition model proposed by [53]. Instead of using the softmax
scores for the assessment, it uses the neural activations in the penultimate layer.
Bendale et al. found that for images of a single class, these activations would
be similar to each other. Thus, they assumed that the instance of one class
would form clusters in the vector space of activation. Using the Nearest Class
Mean Centroid clustering algorithm, they determined a cluster center for each
class using NCM clustering (called Mean Activation Vector) and calculated the
distance to this cluster center for each correctly classified instance in the training
set. They found that these distances follow a Weibull distribution. Hence,
they estimate the parameters of this distribution to build an extreme value
theory-based model of how far the activation are usually distributed around the
cluster center of each class. In order to estimate the confidence of a prediction,
the distance of the activation in the penultimate layer to the cluster center of
the predicted class is calculated. Afterward, the probability of encountering a
correctly classified instance with that particular distance is calculated using the
parameters of the Weibull distribution and extreme value theory.

2.6.4 Context Based

Another approach to establishing confidence in the model’s prediction is also
to include additional information which the perception system did not receive,
e.g., metadata of the image (location, time, weather conditions) [26].

Generally, the context of the input can serve as evidence for the distribution
that the input stems from. If, for instance, the lane detection of an autonomous
vehicle was trained on data gathered under sunny weather conditions, but a
weather service indicates that the current input was captures during a blizzard,
one could suspect that input image might be corrupted (see Section 2.5.1.2) and
thus stems from another distribution which can lead to system failures.

2.6.5 Training with an “Other” Class

[51] argues that labeling something as new, unknown or other should always be
considered a valid option in an open environment. An approach to implement
this requirement is to design a CNN with an explicit “unknown” class, i.e. pre-
senting it with diverse images that do not belong to any other class, and let
the classifier learn to assign an “unknown”, “background” or “garbage”-class to
them. This can be seen as a baseline-approach for the Open-Set problem, as
the classifier learns to identify images that do not belong to any other class.
The goal is that the classifier learns to detect images that do not stem from the
distributions of any other classes, and assigns a default class to them. However,
[17] states that this is in practice difficult to achieve because it requires that all

24 2.6. SELF-ASSESSMENT

those instances are mapped into the same region in the feature space. To enforce
this constraint, they propose the Objectosphere-loss-function, which maximizes
the L2 distance for the clusters of the unknown class and all other classes in the
feature space and thus aims to improve the deep feature representation.

Nguyen et al. report that training with a rejection class fails to provide a re-
liable mechanism for defense against fooling images. They were able to create
a new batch of fooling images that would be miss-classified even if the network
has been trained to reject fooling images [45].

Chapter 3

Attribution based
Self-Assessment

As described in the introduction, state-of-the-art visual perception systems are
sometimes multiple orders of magnitudes too complex - in terms of the num-
ber of their parameters - to be formally verifiable by contemporary technology
and available compute. There are, in general, two approaches to deal with the
uncertainty that arises from the pathologies which some experts assume to be
inherent to contemporary Deep Neural Networks [21]. The first approach aims
to improve the performance of CNNs in order to diminish the likelihood of er-
rors, e.g., by using ensemble models as described in Section 2.3. The second
approach tries to detect errors when - not if - they occur in order to be able to
handle them and retain the system in a safe state, as described in Section 2.6.
We refer to the latter method as self-assessment.

In this chapter, the self-assessment approach for visual recognition systems ex-
ploiting attribution based explanations, that was proposed in the introductory
chapter, will be explained in detail. Section 3.1 will introduce the general con-
cept and provide arguments to substantiate it. In Section 3.2, a framework
that facilitates the development of explanation based self-assessment models,
will be presented. Ultimately, a statistical self-assessment model derived from
that framework will be introduced. This model, and thus the approach, will be
evaluated in Chapter 5.

3.1 Concept

As described in section 2.4, the purpose of attribution-based explanation meth-
ods is to provide a means to create a human-comprehendible explanation for
the prediction made by a classifier by identifying parts of the input that were
most relevant for the prediction. Thus, they allow a human in hindsight to
investigate if the decision of the classifier was reasonable. In GradCAM, as pro-

25

26 3.1. CONCEPT

posed by Selvaraju et al., this is achieved by using the activation-maps and an
estimate of the sensitivity of the prediction with respect to each map. For their
evaluation, Selvaraju et. al. conducted user studies that suggested that human
non-experts1 were able to identify the more reliable of two classifiers when pro-
vided with the GradCAMs of both for several input-images. This experiment
can be understood as the assignment of confidence to an image recognition sys-
tem based on patterns in the activation of neurons (i.e., the features the CNN
extracted from the images) and the relevance of these neurons for the prediction.
We suspect that it is not only possible to assign explanation-based confidence on
a system level, but also to use explanations to assign confidences to individual
predictions. On an abstract level, we argue that an explanation that is similar
to the explanation observed for correct predictions can be regarded as evidence
for a correct prediction. On the other hand, an “unusual“ explanation that is
dissimilar to explanations given for correct predictions is likely to be evidence
for a misclassification. Furthermore, we presume that the process of evaluating
explanations to detect recognition failures can be automated, which enables its
employment for self-assessment at runtime.

Throughout our literature study in the field of recognition failure detection ap-
proaches, as presented in Section 2.6, we were unable to find any publications
considering the harnessing of explanation methods for self-assessment. As there
are numerous different explanation methods, an exhaustive evaluation is con-
sidered to be out of scope. Instead, we aim to provide a proof-of-concept by
focusing on the specific method for attribution based explanation that inspired
the concept: GradCAM. The straight forward approach would be to generate
a GradCAM for each image in a dataset and to train a CNN to predict if the
original image was misclassified based on that CAM. We suspect that such an
approach would yield suboptimal results for the following reasons: In order to
make the explanation human understandable, CAM algorithms condense the
information from activation- and attribution-maps into a single image by cal-
culating a weighted mean. This is necessary as humans are unable to inspect
several hundred images at the same time. As a side effect, this destroys informa-
tion about which specific activation-maps were most active and most relevant.
We argue that this information is potentially valuable for the self-assessment and
should be kept. Therefore, we will not base the self-assessment models directly
on the GradCAM. Instead, we will use the information that the CAMs are calcu-
lated from - activation- and attribution-maps - as a proxy for attribution-based
explanation and hypothesize the following:

Proposition: In Convolutional Neural Networks for image recognition, pat-
terns of attribution observed for an image that are dissimilar to patterns ob-

1The participants where hired on the platform Amazon Mechanical Turk. See https:

//www.mturk.com/

https://www.mturk.com/
https://www.mturk.com/

CHAPTER 3. ATTRIBUTION BASED SELF-ASSESSMENT 27

Input

Classifier

Φ(x)

c(Φ(x))

Prediction

Self-
Assessment-

Model

Confidencde

Context

Activation

A

Attribution

Rc
A

Figure 3.1: Proposed self-assessment approach based on activation A of neurons
for a certain layer and the relevance Rc

A of these neurons for the predictions.

served for correctly classified images during training indicate a higher likelihood
of a misclassification of the CNN for that image.

If the proposition holds true, we can predict from it that it is possible to harness
the attribution-based explanation methods for self-assessment. This concept is
delineated in Figure 3.1. The main contribution of this thesis is the evaluation
of this proposition by gathering evidence to support (or contradict) it. The
remainder of this chapter will provide arguments and some empirical evidence
to substantiate this hypothesis.

3.1.1 Activation

The idea to use the activation values of neurons for the purpose of self-assessment
has already been discussed in the scientific community [13, 7]. Nevertheless, in
this section, arguments for the use of feature embeddings for self-assessment will
be gathered, as the reasoning is similar to the reasoning for the use of attribution
values for neurons. First, a more intuitive line of thought will be introduced in
order to provide the reader with an intuition of the general idea. Afterward,
formal arguments will be brought forward.

3.1.1.1 Intuition

Consider a CNN trained to classify images as showing either an object of
class Tiger, White Shark or Tiger Shark. The convolutional layers will
extract features from the given images that allow the classifier to distinguish
between different classes. These features can stem from the object itself, or
its surroundings. For instance, one would expect that White Shark and Tiger
Shark will often be depicted in an underwater environment, while for images of

28 3.1. CONCEPT

(a) Tiger (b) White Shark (c) Tiger Shark

Figure 3.2: Global Average Pooled activation-maps of 500 instances for 3 ex-
ample classes in the ImageNet 2017 training set for the Vgg19. The vertical
lines indicate that instances of the same class tend to have similar values in the
activation maps.

Tigers, this will be much less likely the case. Additionally, one would expect
that the features detected from the White Shark and Tiger Shark themselves
will be more similar, compared to that of a tiger, because these classes are
apparently more similar in terms of their visual cues.

For instance, consider Figure 3.2, which visualizes the embeddings of instances
from different classes. The visible vertical lines indicate that instances of the
same class tend to have similar embeddings. Now, let us assume that the
classifier predicts that some image belongs to the class Tiger. If this prediction
is correct, we would expect that the features are similar to the features of
instances of class Tiger in the training set. If, on the contrary, the classifier
predicts Tiger, while only a few neurons usually associated with Tigers are
active, or features usually associated with underwater environments are being
detected, we would be suspicious about the prediction.

3.1.1.2 Arguments

As mentioned in Section 2.2, the front layers of a CNN map the input into a
lower-dimensional space, called feature space. The process of learning this em-
bedding function Φ is some times referred to as representation learning because
the input data is transferred into another lower dimensional representation that
should preserve as much information about the original input as possible [23].
It is widely assumed that the embedding function preserves similarities in the
input. This means that if two input images x1 and x2 are similar, then Φ(x1) is
expected be similar to Φ(x2) according to some distance metric [32]. As similar
images are mapped to the same regions of the feature space, images of the same

CHAPTER 3. ATTRIBUTION BASED SELF-ASSESSMENT 29

class can be expected to form clusters. In the simplest case, we can think of
the instances of a class as residing inside of a hypersphere around some class
center(s).

This property of the neural activation has been visualized in Figure 3.3. We
applied a similarity preserving dimensionality reduction method called t-SNE
to transform the embeddings of instances of different classes into the 2D plane
[40]. We notice that different classes form distinct clusters.

Therefore, when the classifier predicts that an instance x belongs to a certain
class, while Φ(x) significantly diverges from the embeddings usually observed
for this class (i.e., Φ(x) is an outlier of the class-cluster(s)), we can anticipate
that x also significantly diverged from the instances observed during training.
We should, therefore, be skeptical about the classifier’s prediction.

This idea is related to the concept of the open-set problem, which states that
instances that are dissimilar from the training instances of a class are more likely
to belong to another unknown class [6].

(a) Vgg19 (b) Xception (c) Inception v3

Figure 3.3: 2D-activations (t-SNE embeddings [40]) for instances of 40 classes
from the ImageNet 2017 training set. Apparently, the Vgg19 architecture does
not produce equally distinctive clusters.

3.1.2 Attribution

In this section, arguments for the use of neural attribution values for self-
assessment will be presented. To the best of our knowledge, this approach
has never been discussed in scientific literature before. However, the line of rea-
soning is analog to the one for the neural activation. At first, a more intuitive
line of thought will be presented in order to provide the reader with an intuition
of the general concept. Afterward, formal arguments will be brought forward.

30 3.1. CONCEPT

(a) Tiger (b) White Shark (c) Tiger Shark

Figure 3.4: Global Average Pooled attribution-maps of 500 instances for 3 ex-
ample classes in the ImageNet 2017 training set for the Vgg19. The vertical
lines indicate that instances of the same class tend to entail similar values in
the attribution-maps.

3.1.2.1 Intuition

Again, consider a CNN trained to classify images as showing either an object of
class Tiger, White Shark or Tiger Shark. The convolutional layers extract fea-
tures from these images. The relevance of these features for the example classes
is depicted in Figure 3.4. Let us assume that for some image, the classifier
predicts the class Tiger. We would now expect the classifier to base this predic-
tion on features that are usually associated with the class Tiger. Therefore, the
attribution values obtained from the explanation method should be similar to
the ones observed for correctly classified images of class Tiger. If the classifier,
on the contrary, based its decision on features that are in general not associ-
ated with tigers, we should be skeptical about the prediction. If, for example,
we observed unusually high relevance scores assigned to features for underwater
environments, while the classifier predicts Tiger, we should be suspicious about
the classifier’s decision.

3.1.2.2 Arguments

In line with the similarity of neural activations, we argue that if two instances
x1 and x2 are similar, the relevance assigned to the neurons should be similar as
well. If similar inputs result in similar extracted features - which, as described
in the previous section, is generally assumed to be true for well-trained networks
throughout the scientific literature - then, the relevance assigned to these fea-
tures should be similar as well, because otherwise, the classifier’s output could
be different.

This property of attribution values has been visualized in Figure 3.5. Again, we
used t-SNE to transform the attribution values of instances of different classes

CHAPTER 3. ATTRIBUTION BASED SELF-ASSESSMENT 31

into the 2D plane. We notice that different classes form distinct clusters.

(a) Vgg19 (b) Xception (c) Inception v3

Figure 3.5: 2D attribution (t-SNE embedding [40]) for instances of 40 classes
from the ImageNet 2017 training set.

32 3.2. FRAMEWORK

3.2 Framework

In this section, we will present a framework that facilitates the development of
models for self-assessment based on activation- and attribution-maps. The goal
is to modularize the process in a way that enables the transparent exchange
of individual algorithms. For each of the steps, we will provide some examples
of algorithms that may be used. The general idea is to model how “good” or
“bad” explanations (in the form of activation- and attribution-maps) look. The
model will then assign confidence to new predictions based on how similar their
explanation looks like to the ones previously observed. We follow the typical
machine learning framework of gathering data, extracting meaningful features
from that data, and then building a model to make predictions for unseen data.
An overview of the framework is provided in Figure 3.6.

Feature
Extraction

Activation
Maps

Prediction

Attribution
Maps

Self-
Assessment

Model

“Explanation”

Figure 3.6: Scheme of the proposed framework. First, gather the required data
and extract features if necessary. Finally, build a model to make predictions for
unseen data.

3.2.1 Data Acquisition

Initially, we require data to build a self-assessment model. This data will usually
consist of a number of explanations for predictions of the CNN of interest. Since
we focus on attribution based explanations, we will gather activation-maps,
attribution-maps, and predictions, as they contain all information that is used
to calculate a CAM.

3.2.1.1 Calculation of Activation-Maps

First, we have to decide on a layer whose activation we will use. In general, the
activation A of any layer of the CNN could be used, as long as it is possible
to calculate the relevance of these activations for the prediction. In the most
extreme case, even the input layer could be chosen (where A = x). In practice,

CHAPTER 3. ATTRIBUTION BASED SELF-ASSESSMENT 33

however, high-level features are preferable, as they are more distinctive for dif-
ferent classes [7]. For that reason, Bendale et al. [7] used the activation of the
penultimate layer, which resulted in ten channel 1 × 1 “activation-maps” that
contain the outputs of the penultimate layer.

If we intend to preserve information about the location or the distribution of
detected features in the input data, we have to pick a layer that is lower than
any layer that destroys this information (i.e., flattening or global pooling).

3.2.1.2 Predictions

Next, we have to calculate the predictions of the CNN for the images, as they
are required to calculate the attribution-maps in the following step. Calculating
the predictions is straight forward. To the best of our knowledge, there are no
variations that can be applied.

3.2.1.3 Calculation of Attribution-Maps

Now that we obtained the activation-maps and the predictions, we can calculate
the relevance of each neuron for the classifier’s prediction. Examples of appli-
cable algorithms include the occlusion method, or gradient based methods like
saliency maps, GradCAM, Layer-wise Relevance Propagation [5], Deep Taylor
Decomposition [43] or DeepLIFT [56].

3.2.2 Feature Extraction

The calculation of neural activations and the estimation of relevance scores for
these activations will result in several activation- and attribution-maps for each
image. If a layer was chosen that does not destroy spacial information, the self-
assessment could be understood as an image classification task involving two
images (activation- and attribution-maps) of the same size with k channels each
(where k is the number of activation/attribution-maps)2. As for other image
classification tasks, the data can be high dimensional, so it might be desirable
to extract features from these maps. In general, every feature extraction process
that can be applied to images can be used, as long as it can be applied to images
of any size with an arbitrary number of channels. Examples for algorithms
include calculating the mean over each activation-map, which is equivalent to
global average pooling. More sophisticated methods include HOG, SIFT, GIST,
or pixel histograms, which are used in state-of-the-art computer vision tasks
that are not learning to extract features themselves. Moreover, it is possible
to apply feature learning (or representation learning) methods. However, this
might impair the explainability of the model. Other options to reduce the

2It could also be interpreted as image classification task for a single image with 2k channels.

34 3.2. FRAMEWORK

dimensionality of the data include linear- or nonlinear dimensionality reduction
algorithms, like Principle Component Analysis or manifold learning.

3.2.3 Self-Assessment Model

The final step is to build a model that estimates the confidence in the prediction
based on the features extracted from the neural activation- and attribution-maps
in the previous step (or the maps themselves if no feature extraction was per-
formed).

In the context of multi-class image recognition, a fundamental decision is
whether to build one model for all classes or create an individual model for
each class3. While the former is probably less complex with regard to the im-
plementation, we anticipate that the self-assessment model itself has to be more
complex to make reliable predictions for all classes. On the other hand, the
model might be able to represent some properties of the overall system that can
not be captured by smaller models that only predict failures for one class. If,
for instance, the activity of one particular neuron indicates a failure regardless
of the prediction, a single model for all classes could be able to leverage this
correlation more effectively.

In the following chapters, several models will be suggested. In general, these
models can be loosely grouped into statistical models and machine learning
models4.

3.2.3.1 Statistical Model

As discussed earlier, it is generally assumed that the embeddings of instances of
the same class are similar to one another, and we argue that the same holds for
the relevance scores of these embeddings. Mathematically, similarity is usually
described as a distance as calculated by some metric in a metric space (e.g., a
normed vector space). Therefore, instances of the same class will tend to reside
in the same region (according to this distance metric) of the vector space, while
instances of other classes will tend to reside in different regions. Therefore, if an
instance resides in a different region than instances of the same class observed
during training, this instance is more likely to be misclassified, as it is dissimilar
to the training data and might stem from a different distribution. Such models
fall into the category of Proximity-based Outlier Detection. One variation of this
approach is to determine cluster centers of the instances in the feature space.
The confidence in a prediction is then calculated based on the distance from

3Building one self-assessment model per class effectively turn the model into a mixture-of-
experts ensemble (see Section 2.3.2), as it divides the problem space into smaller subproblems
that are easier to solve. The CNNs output can be seen as a gating function, as it determines
which self-assessment submodel will be invoked.

4For an in-depth explanation of the differentiation of these concepts, see [9].

CHAPTER 3. ATTRIBUTION BASED SELF-ASSESSMENT 35

these cluster centers. This approach was, for example, used by [7] and could be
applied to the attributions as well.

There are multiple distance metrics that one might use, e.g., the Euclidean,
Manhattan on the Cosine metric. Bendale et al. [7] used a linear combination
of different metrics. It is also possible to learning metrics. This approach was
used for image classification before [41, 42]. In order to determine the cluster
centers, various clustering algorithms may be used. A common approach in the
literature is NCM [42].

3.2.3.2 Machine Learning Model

Another approach is to train a machine learning model to learn to distinguish
between correct and incorrect predictions based on the features extracted from
the attribution- and activation-maps.

This method was used, for example, by[70] and [16]; however, they harnessed
the activation of the last convolutional layer or the penultimate layer and did
not employ the relevance values. Daftry et al. [13] trained a Support Vector
Machine to estimate the confidence based on the feature embeddings. Another
option would be the usage of Siamese networks, a deep neural network archi-
tecture that is used, for example, in face recognition [65]. In this approach, two
identical networks explicitly learn to extract features of images in a way that
minimizes the distance of the feature embedding for images of similar classes,
while maximizing this distance for images of different classes. As indicated in
the previous section, when using convolutional architectures, the feature extrac-
tion step could be omitted, as the convolutions extract characteristic features
by themselves.

A problem that may arise is in a machine learning setting is the class balance:
with recognition systems becoming increasingly more powerful, the number of
errors in the training set decreases, and thus the number of possible negative
training examples for a machine learning algorithm. To remedy this, one can
assign higher sample weights to the minority class. Models that learn only from
correctly classified instances do not suffer from this problem. These models do
not learn to discriminate between samples from multiple distributions, but only
estimate whether a sample is out-of-distribution. To some extent, this mitigates
the problem that all instances from “unknown” classes have to be mapped to
the same region of the feature space (see Section 2.6.5). One such approach is
the (stacked convolutional) autoencoder architecture as used for anomaly de-
tection [23]. This network architecture learns what “normal” input looks like
by mapping the input images into a lower-dimensional representation, and to
reconstruct the original input from this compressed representation afterward.

36 3.3. MODELING

The reconstruction process usually introduces reconstruction errors. After suc-
cessful training, these errors are expected to be small for inputs similar to the
ones observed during training, but significantly larger for unusual input.

3.3 Modeling

This chapter introduces the self-assessment models that were used throughout
the experiments. For each step in the afore-described generic framework, we
will explain which algorithms were used and why.

As stated earlier, the purpose of this thesis is to evaluate whether attribution
scores can be harnessed to predict accurate confidences, or if they can be used to
improve the confidence estimation based on neural activation. To test this, we
extracted three different types of features from the activation- and attribution-
maps of the last convolutional layer, and build three self-assessment model (per
CNN) based on one feature each. While two of these features incorporate the
attribution-maps, the other one does not. An overview is provided in Figure 3.7.
In Chapter 5, the performance of these models will be compared, which allows
us to make statements regarding the hypothesis. If, for example, the results
show that self-assessment the models using the attribution score do not perform
better than random guessing, the hypothesis becomes less tenable.

Weighted
Activation

(WA)

Mean
Relevance
(MR)

Mean
Activation

(MA)

Activation
Maps
A

Prediction
Sc

Attribution
Maps
Rc

A

Model 2

Model 3

Model 1

GradCAM-
Information

Extracted
Features

Self-Assessment
Models

Figure 3.7: Overview of the self-assessment models derived from the framework.
We extracted three different features from the information that GradCAMs are
calculated from and built a separate model for each.

CHAPTER 3. ATTRIBUTION BASED SELF-ASSESSMENT 37

3.3.1 Data Acquisition

As described in Section 3.2.1, we have to acquire the relevant data from the
CNN first.

3.3.1.1 Activation-Map Calculation

We decided to use the activation of the last convolutional layer for the reasons
mentioned earlier. The calculation of the neural activation A from the input
image is straight forward. The input x is passed forwards through the layers
down to the layer of interest. Note that in the following description of the
self-assessment model, A could also refer to the activation of other layers.

3.3.1.2 Predictions

From the extracted features, we can calculate the prediction of the network by
propagating A forwards through the remaining layers and obtain a predicted
class c.

3.3.1.3 Attribution-Map Calculation

Next, we calculate the relevance Rc
A of each neural activation in A for the class

score Sc. We decided to use the gradient of the class score with respect to that
activation value as relevance, which is equivalent to the GradCAM approach (or
the Saliency-Map approach, if you see A as the input of the standalone neural
network that consists of all remaining layers). The formula for GradCAM is
given in Equation 2.10. Transferred to our approach, we get:

Rc
Ak

ij
=

∂Sc

∂Ak
ij

(3.1)

The resulting attribution-maps have the same dimensionality as the extracted
activation-maps.

3.3.2 Feature Extraction

In order to reduce the dimensionality of the data, we extracted three different
features from the activation- and attribution-maps. The calculation of these
features will be described in the subsequent sections. In the following, the
extracted features for some image x are referred to as fλ(x), where λ denotes
the explicit type of feature. When f(x) is used without a subscript (e.g. in
Figure 3.9), this indicates that the statement applies to all features.

38 3.3. MODELING

3.3.2.1 Mean Activation

The first feature fA, called Mean Activation, will be derived from the activation-
maps. As described in Section 2.1.1, in modern CNN architectures like Xception
and Inception v3, the activation-maps Ak are flattened using global average
pooling before being fed into the FC layers (see Equation 2.2). Inspired by this,
the global average pooled activation-maps, denoted fA(x), are used as feature
vector for our model:

fA(x) =

fA(x)1
...

fA(x)k

 =
1

Z

∑
i

∑
j

Ak
ij (3.2)

where Z is equal to the number of pixels in each activation-map Ak. For the
Inception v3 and the Xception architecture, this breaks down to using the vector
embedding ϕ(x) as feature. The Vgg19 on the other hand flattens its activation-
maps without global pooling, thus fA(x) is unequal to ϕ(x) in that case.

3.3.2.2 Mean Relevance

The second feature fRc
A
, called Mean Relevance5, will be based on the

attribution-maps. Inspired by GradCAM, we calculated the mean over each
attribution-map, which can be seen as global average pooling of the attribution-
maps. In GradCAM, this value is denoted as αk and is used as an estimate
of the relevance for each activation-map Ak, as stated in Equation 2.11. We
calculate fRc

A
as follows:

fRc
A
(x) =

fRc
A
(x)1
...

fRc
A
(x)k

 =
1

Z

∑
i

∑
j

Rc
Aij

(3.3)

where Z is equal to the number of pixels in each activation-map Ak.

3.3.2.3 Weighted Mean Activation

To examine if there is a correlation between the Mean Activation and the Mean
Relevance feature, we plotted both values against each other. The results are
depicted in Figure 3.8. The Mean Activation (y-axis) is positive as all CNNs
use the ReLU activation function, which can only return positive values (see
Equation 2.1).

Apparently, both features are not independent, as we notice that the variance
in the Mean Relevance decreases with the magnitude of the Mean Activation.

5We chose the name Mean Relevance instead of Mean Attribution, so the abbreviation would
not collide with the Mean Activation (MA).

CHAPTER 3. ATTRIBUTION BASED SELF-ASSESSMENT 39

(a) Vgg19 (b) Inception v3 (c) Xception

Figure 3.8: Scatterplot of Mean Relevance (x-axis) plotted against the Mean
Activation (y-axis) for all activation-maps of images in the Imagenet 2017 Vali-
dation set. While the range for the Mean Relevance seems to be similar for each
architecture, the magnitude of the Mean Activation feature varies between the
networks. Apparently, the magnitude of the Mean Relevance feature seems to
decrease with higher Mean Activation values.

We interpret this is the following way: neurons with a high activation will not
change the resulting prediction much when being changed marginally, as the
activation will remain on a high level6. Therefore, to quantify the impact of a
certain neuron, the activation will be weighted with the relevance, as done in
the GradCAM approach.

Hence, the third feature, fARc
A
, aims to combine information from the activation-

maps and the attribution-maps in a meaningful way. Inspired by GradCAM,
we weighted each of the Mean Activations fA with the Mean Relevance fRc

A

(compare to Equation 2.9) elementwise (Hadamard product). As fRc
A
(x) and

fA(x) are both vectors at the same size, the result of this operation will again
be a vector of the same size, The idea is that this vector estimates the impact of
each activation-map on the classification result. Unlike GradCAM, however, we
do not apply the ReLU function to this calculation, as we do not wish to discard
features that have a negative impact on the class score (i.e., all values where
fRc

A
< 0). This information might be valuable to the self-assessment model.

Thus, the feature is calculated as follows:

fARc
A
(x) = fRc

A
(x) ◦ fA(x) =

fRc
A
(x)1fA(x)1

...
fRc

A
(x)kfA(x)k

 (3.4)

6This interpretation is not necessarily accurate. For the sake of argument, let us assume
that the Mean Relevance follows a normal distribution with a variance that is independent of
the magnitude of the activation. There are many instances with a small activation, and a few
instances with a high activation. Statistically, this results in smaller observed extreme values
for high activation values, as there are fewer samples.

40 3.3. MODELING

3.3.3 Self-Assessment Modell

The main difference between what we referred to as statistical models and
machine-learning models in Section 3.2.3 is their explainability. Complex ma-
chine learning models like Deep Neural Networks or Random Forrest are derived
from simple statistical models (e.g., perceptrons and decision trees), but their
complexity hinders the understanding of their decisions.

Furthermore, machine-learning-based models could suffer from the same
pathologies that motivated us to build a self-assessment model in the first place,
i.e., unexpected failures. We, therefore, decide to use a proximity-based sta-
tistical model as described in Section 3.2.3.1 because the predictions of such
models are easier to explain compared to machine-learning-based approaches.
The employment of such a model will allow us to make statistical statements
regarding the clustering properties of activation and attribution values.

As mentioned in Section 3.1.1, the feature embeddings of instances of the same
class gather in the same regions of the feature space, and, as elaborated in Sec-
tion 3.1.2 we argue that the same holds for the relevance scores of their features.
For simplicity, we make the following assumption: In the high dimensional vec-
tor space of the features extracted from the activation- and attribution-maps
(i.e., fA, fRc

A
and fARc

A
), all instances of a class reside in a hypersphere around

some cluster center(s). Instances whose true class is unknown that are closer
to the centers of these hyperspheres have a higher probability of being classi-
fied correctly, while instances in greater distance from the cluster centers have
a higher probability of actually belonging to another (possibly unknown) class.
An example feature space with some correctly (blue) and misclassified (red) in-
stances is depicted in Figure 3.9.

It should be mentioned that we can not eliminate the possibility of unexpected
failures for proximity-based models either, as these models are based on the
assumptions mentioned above. If these assumptions are violated (e.g., instances
that are dissimilar to instances encountered during training are mapped to the
same region), the model will not work as expected. Therefore, the models de-
pend on the quality of the convolutional feature extraction. However, should
the self-assessment fail unexpectedly, we can deduce that the activations or the
relevances violate the similarity-assumption.

The goal of the “training” of the model is to estimate the clusters centers of
each class. As we assume that each class has its own clusters, we will create a
separate model for each class, as described in Section 3.2.3. After determining
the cluster centers, we will create a statistical model that describes how dense
the (correctly classified) instances are distributed around these centers. For
some unseen instance classified as c, we can then calculate its distance from the

CHAPTER 3. ATTRIBUTION BASED SELF-ASSESSMENT 41

f
(x
) 2

f(x)1

Figure 3.9: Features of correctly classified instances (blue) of the same class c
gather in the same region of the high dimensional feature space defined by f .

nearest center of class c and use the model to estimate the probability that a
correctly classified instance of class c will be located in that distance.

3.3.3.1 Clustering

In order to estimate the class-specific cluster centers, we used K-Means cluster-
ing. This algorithm minimizes the sum of the squared euclidean distances to
the cluster center for all instances in that cluster. The clustering results in a
set of K cluster centers {µ1, ..., µK}. When applied to the example with K = 2,
the result would look as depicted in Figure 3.10.

3.3.3.2 Distance Calculation

To describe how the correctly classified instances are distributed around these
cluster centers, we calculate the distance dmin of each of these instances to the
nearest cluster center as follows:

dmin(x) = min
∀k∈{1,...,K}

d(f(x), µk) (3.5)

The idea is related to the k-Nearest-Neighbor algorithm. For our implementa-
tion, we used the Euclidean distance metric, as we found that the used distance
metric did not have a significant impact on the results. This process creates a set
of distances. An example histogram of such a distance-distribution is depicted
in Figure 3.11a.

42 3.3. MODELING

µ1

µ2

f
(x
) 2

f(x)1

Figure 3.10: Features of correctly classified instances (blue) of the same class c
clustering around some cluster centers µk in the high dimensional feature space.
Misclassified instances (red) are assumed to have a greater distance from these
cluster centers than correctly classified instances.

I
n
st
a
n
ce
s

dmin(x)0

(a) Histogram

P
(d

m
in

=
d
)

d0

1

(b) Weibull PDF

Figure 3.11: Example of a Histogram of minimal distances for all correctly
classified instances x of a class c and a corresponding Weibull PDF that fits the
distance distribution.

3.3.3.3 Distribution Fitting

[7] found that the distance of image embeddings to their nearest class mean
center follows a Translated Weibull Distribution7. We were able to confirm this
for the layers we used and our clustering algorithms during our experiments.
The probability density function of a Translated Weibull Distribution is defined
as:

w(x; k, λ, τ) =

{
k
λ

(
x−τ
λ

)k−1
e−(

x−τ
λ)

k

x ≥ τ,

0 x < τ
(3.6)

where

k > 0 is the shape parameter,

7Note that they used a different layer and a different CNN architecture.

CHAPTER 3. ATTRIBUTION BASED SELF-ASSESSMENT 43

λ > 0 is the scale parameter and

τ is the location parameter

We estimate the Weibull parameters k, λ, and τ of the distance distributions.
For our example, the resulting Weibull PDF could look as depicted in Figure
3.11b.

3.3.3.4 Confidence Calculation

Using the cumulative distribution function F of the Weibull curve, we can cal-
culate the probability that for some feature extraction function f and some
instance x, we observe a correctly classified instance with dmin(x) ≥ d.

F (x) = P (dmin(x) ≤ d) = 1− P (dmin(x) ≥ d) (3.7)

This corresponds to the probability that the feature embedding of x has a dis-
tance ≥ dmin(x) from the nearest cluster center. For a Translated Weibull
Distribution, the CDF is defined as:

F (x; k, λ, τ) =

{
1− e−(

x−τ
λ)

k

x ≥ τ

0 x < τ
(3.8)

Given the Weibull parameters, the confidence of some instance x is calculated
as:

confidence(x) =

e
−
(

dmin(x)−τ

λ

)k

x ≥ τ

1 x < τ
(3.9)

The resulting probability for our example distance distribution is plotted in
Figure 3.12. The resulting probability model is delineated in Figure 3.13. Since
we do not create a separate distance distribution model for each cluster (i.e., we
do not consider which specific cluster is closest), the radii of the hyperspheres
surrounding each cluster center are equal.

44 3.3. MODELING

P
(d

m
in

≥
d
)

1

d0

Figure 3.12: Example of the function 1− Commulative Density Function for a
Weibull distribution.

µ1

µ2

f
(x
) 2

f(x)1

Figure 3.13: The resulting probability model. Note that both clusters centers
use the same probability density function.

Chapter 4

Implementation

In the following chapter, the implementation and training of the considered
convolutional models and their self-assessment models will be described in de-
tail. All code was written in the Python programming language. Throughout
the implementation, we used Keras [12] with Tensorflow [2] as backend, and
many functions from the scikit-learn framework [47]. The main goals for the
implementation were ...

1. to be able to conduct experiments to gather evidence regarding the propo-
sition (see Section 3.1),

2. to allow others to reproduce the experiments,

3. to able to test a variety of datasets, algorithms and models (as described
in Section 3.2) and

4. to be able to evaluate and compare our results to other approaches

In Section 4.1, it will be explained which CNNs were used to test the self-
assessmen, why we chose these networks, and on which data they were trained.
Afterward, in Section 4.2, it will be described how the framework and the self-
assessment model for the selected CNNs was implemented. Ultimately, we will
provide some notes on the development process in general.

4.1 Convolutional Neural Networks

This section will introduce the CNNs that were used throughout the experi-
ments.

4.1.1 Training Dataset

We decided to train the base models on the ImageNet 2017 dataset, which is
a large scale image dataset and foundation of the ImageNet Large Scale Visual

45

46 4.1. CONVOLUTIONAL NEURAL NETWORKS

Recognition Challenge (ILSVRC) [50]. The subset of the ImageNet used in the
challenge incorporates 1000 ImageNet categories and about 1.3 million images.

4.1.2 Convolutional Base Models

We decided to use three CNN based on different architectures: Vgg19 [58],
Xception [11], and Inception v3 [63]. These model architectures have been
chosen because they are well known, and pretrained models for the ImageNet
are publicly available for each architecture. This will enable others to replicate
the experiments.

4.1.3 Convolutional Ensembles

In addition to the other models, we decided to train a ConSemble as described
in Section 2.3.3 based on the three convolutional base models.

4.1.3.1 Preprocessing

Since we did not intend to train the convolutional layers of the network, we first
extracted the attribution-maps of the last convolutional layer of each image
in the dataset for each of our base models. Training the ConSemble on the
activation-maps allows us to increase the batch size, as it is possible to fit more
instances into the memory at the same time. This speeds up the training process.
Additionally, these activation-maps are a product of the data collection step of
the self-assessment (see Section 4.2.1.2). Table 4.1 provides an overview of the
layers whose activations we used, as well as the size of the obtained activation-
maps.

Table 4.1: Size of Activation- and Attribution-Maps for different network archi-
tectures

CNN Layer Name Maps Map Shape

Vgg19 block5 pool 512 7× 7

Inception V3 mixed10 2048 8× 8

Xception block14 sepconv2 act 2048 10× 10

4.1.3.2 Training

The ConSemble has been trained on an NVIDIA DX-1-Cluster with 8 NVIDIA
Tesla V100 GPUs and 512 GB Memory. The hyperparameter optimization was
performed using a guided grid search. More sophisticated strategies for neural
architecture search include evolutionary algorithms, Bayesian optimization, and
reinforcement learning [18]. Due to time limitations, we were unable to perform
a more extensive HPO and therefore suspect that the results could be further

CHAPTER 4. IMPLEMENTATION 47

improved by investing additional compute. For the same reason, we did not per-
form dataset augmentation, which also has the potential to create more robust
networks and may thus lead to performance gains [23].

Our hyperparameter set included an optional hidden dense layer with various
number of neurons, the batch size, the number of epochs, the learning rate, L1,
L2 and L1L2 regularization, dropout regularization [60] and batch-normalization
[33]. To limit the size of the search space, we considered only the ReLU activa-
tion function1 (see Section 2.1.1) for the hidden dense layer, and the prevalent
categorical cross-entropy as loss function. To prevent over-fitting and reduce
training time, we implemented early stopping. For weight optimization, the
Adam optimization algorithm was used [35].

We chose the largest batch size that would occupy the majority of the 32 GB
memory of the Tesla V100, as this enables us to utilize the performance of the
GPU. For unknown reasons, we did not experience the close-to-linear speed up
that is usually expected when training on multiple GPUs.

We used random uniform weight initialization with [−0.05, 0.05]; Goodfellow et
al. claim that when using the rectifier activation function, as we did, the out-
comes could be improved by initializing all weights with a small positive value
[23]. This ensures that all ReLUs are active at the beginning, which is impor-
tant considering that the weights of inactive neurons are not adjusted during
gradient descent (since the gradient for inactive units is zero).

The best performing network in terms of the validation loss has approximately
5.6 M trainable parameters. The architecture is depicted in Figure 4.2. All hy-
perparameters not included in the sketch are listed in Table 4.2. An overview of
the accuracy and the loss over the course of the training can be found in Figure
4.1.

Table 4.2: Hyperparameters of the ConSemble with the best performance.

Hyperparameter Value

Optimizer Adam (β1 = 0.9 and β2 = 0.999)

Batch Size 10.000

Learning Rate 0.000025

Epochs 300

Loss Categorical Crossentropy

Weight Initialization Random Uniform ∈ [−0.05, 0.05]

Trainable Parameters 5,610,000

1According to [23], the ReLU activation function is an “excellent default choice”.

48 4.2. SELF-ASSESSMENT

(a) Loss (b) Accuracy

Figure 4.1: Accuracy and categorical crossentropy (loss) during the ConSemble
training. The minimum validation loss was reached after 100 Epochs.

4.2 Self-Assessment

4.2.1 Framework

The implementation of the framework, as described in Chapter 3.2 strives to-
ward multiple objectives to achieve the three goals stated in the opening of this
chapter. The most important objectives are modularity and performance. The
former allows for the rapid implementation of self-assessment methods using
different algorithms or features, without having to alter other components. Per-
formance is of the essence as we intend to process huge amounts of data in a
strictly limited amount of time.

To met these requirements, we decided to embed the framework into a pipeline-
based approach. The steps in the pipeline are connected via interfaces. Each
step may be altered as long as this change does not break the compliance with
any interface. This approach facilitates modularity and speed, as each pipeline
step may be modified or reconfigured without invalidating the results of the pre-
ceding steps. Furthermore, when using a pipeline approach, bottlenecks can be
identified easily, which allows us to optimize specific components of the system
for performance. The pipeline, along with input and output-data (or config-
urable options) for each individual step, is delineated in Figure 4.3. As you can
see, we added a pre- and a post-processing-step. Each step will be described in
the following.

Note that the workflow using the framework is not necessarily strictly sequen-
tial. Throughout the self-assessment modeling, certain consecutive steps have
been reiterated with different parameters; for example, the model training and
the evaluation.

CHAPTER 4. IMPLEMENTATION 49

Input x

ΦXception(x)ΦV gg19(x) ΦInceptionv3(x)

GA-PoolingGA-Pooling GA-Pooling

Dropout (20 %)

Dense (1300, ReLU)

Dropout (25 %)

Dense (1000, SoftMax, L2 = 0.001)

Output h(x)

Figure 4.2: Architecture of the ConSemble with the best performance.

4.2.1.1 Dataset Preparation

In the first step, we preprocess the image datasets so that different datasets
can be handled in a uniform manner by the framework. This step has to be
implemented for each dataset individually.

4.2.1.2 Raw Data Extraction

Once the datasets are in the appropriate format, we can start to gather the
data that is required for the self-assessment. We loop through all images in
the prepared dataset. For each image, we calculate the activation-maps, the
attribution-maps, and the prediction for some CNN and some layer.

As large quantities of data are processed (the ImageNet 2017 training set con-
tains more than 100 GB of compressed images), we split the images into work
packages that fit into the memory and may be processed in parallel by multiple
workers using dedicated GPUs. The results for individual work packages are
aggregated and stored in an HDF5 file.

4.2.1.3 Feature Extraction

In the following step, the different features, as explained in Section 3.3.2, are
extracted from the activation- and attribution-maps.

50 4.2. SELF-ASSESSMENT

Dataset
Preprocessing

Raw Data
Extraction

Feature
Extraction

Modeling
Training

Evaluation

P
ip
el
in
e

In
p
u
t

O
u
tp
u
t

FrameworkPreprocessing Postprocessing

Image
Dataset

Attribution-
Algorithm

CNN

Layer

Feature
Type

Model
Type

Evaluation
Criterion

Dataset

Peprocessed
Dataset

Prediction
Activation
Attribution

Extracted
Features

Model Results

Figure 4.3: Scheme of the pipeline-based implementation of the proposed Frame-
work. The output(s) of each step serve as input to the next step. Each step may
require additional configuration and input data and must be finished entirety
before the next step can commence. Configurable parameters are emphasized.

For the Xception CNN, this reduces the amount of raw data for the ImageNet
Training set from 2.1 TB to about 31 GB for all three feature types2.

4.2.1.4 Modeling

The next step constructs a model based on the extracted features. The model
has to implement a particular interface and is then “trained” by the framework.
For the proximity-based statistical model proposed in Chapter 3.3, we estimated
the parameters of the Weibull distributions using the libMR provided by [53].
The process creates a self-assessment model for the CNN passed into the pipeline
at step two.

4.2.1.5 Evaluation

The evaluation is implemented in a generic way that allows evaluating arbitrary
models created by the framework3, given some evaluation criteria and an HDF5
dataset. The implementation of different evaluation criteria allows us to compare
the results to other state-of-the-art approaches that use different evaluation
methodologies. The chosen evaluation methodology, as well as the results, will
be provided in the following chapter.

2The Xception has feature maps of size 10× 10. Global Average Pooling reduces these 100
pixels to a scalar value, effectively compressing by the factor 100.

3I.e., models that implement the mentioned interface.

CHAPTER 4. IMPLEMENTATION 51

4.2.2 Demo

To provide the reader with a demonstration of the proposed self-assessment
approach, we deployed a CNN and a self-assessment model into a web applica-
tion4. It allows the user to upload images which will then be processed by the
framework. The web application provides softmax classification results as well
as confidence scores for the top prediction for comparison. Figure 4.4 provides
a screen-shot of the user interface of the demo application. In order to ease the
deployment, the application server is containerized in a docker image.

4.3 Development

The source code5 provides two Python packages. The first one facilitates the
training of convolutional ensembles, while the second one provides the core com-
ponents of the framework. For version control, git has been used. Gitlab allows
to create pipelines for continuous integration. We configured it to run unit tests,
and to build the documentation and the Python packages after each change in
the code.

4Available at https://ma.kondas.de
5Available at https://git.kondas.de/kkirchheim/ma-code-consemble/

https://ma.kondas.de
https://git.kondas.de/kkirchheim/ma-code-consemble/

52 4.3. DEVELOPMENT

Figure 4.4: User Interface of the Developed Demo Web Application

Chapter 5

Evaluation

In this chapter, the self-assessment approach, based on different features as pro-
posed in Chapter 3, will be evaluated. Recall that the superordinate idea of this
thesis is to use attribution-based explanation methods to check if the predic-
tion of a CNN is plausible. We use the activation-maps and attribution-maps
as a proxy for the explanation, as they contain all the information that the
considered example explanation method - GradCAM - is calculated from. The
attribution- and activation-maps provide more information than a GradCAM,
since GradCAM only visualized the averages of the weighted activation-maps,
thereby discarding information about the specific features that have been de-
tected. The goal of the conducted experiments is to gather evidence with regards
to whether it is possible to detect misclassified images by evaluating patterns
in the attribution-maps, which are created by the explanation method. The
design of our model should allow us to conclude whether the attribution-maps
form clusters like the vector embedding do. Additionally, by including models
that are based on a combination of activation- and attribution-maps (i.e., self-
assessment models based on the Weighted Activation feature), we can evaluate
whether it is possible to improve self-assessment beyond self-assessment based
exclusively on activation patterns.

In the first section of this chapter, the datasets that were used throughout the
experiments will be introduced. Afterward, the performance of the considered
CNNs on these datasets will be evaluated, following the evaluation protocol
Wehmeier [67] that emphasizes safety aspects. The goal of this pre-evaluation
is to put the performance of the recognition systems into perspective before
evaluating the self-assessment models for these CNNs. In Section 5.3, the re-
sults for the self-assessment models will be presented. The chapter closes with
a discussion of the findings.

53

54 5.1. DATASETS

Table 5.1: Datasets used for the conducted experiments and the images types
they contain, as described in Section 2.5

Dataset Ordinary Open Set Adversarial Fooling

ImageNet-A [31] ✓
ImageNet 2017 [14] ✓
ImageNet 2010 OS [14] ✓
Fooling Images [45] ✓
Mix ✓ ✓ ✓

5.1 Datasets

In this section, the datasets employed in the following evaluation procedures
will be described. The datasets have been selected with the intent to cover as
many of the image types that may cause errors that were identified during the
literature survey (see Section 2.5) as possible. On overview of the datasets is
provided in Table 5.1. Due to time limitations, we have not been able to include
corrupted and adversarial images.

5.1.1 ImageNet 2017

Our CNNs were trained on the ImageNet 2017 training set [14] (see Section
4.1.1). The validation set of ImageNet 2017 comprises 50,000 images, i.e., 50
images per class. As the ImageNet is the foundation of a challenge for computer
vision experts, the test sets are not publicly available. Therefore, we will use
the validation set throughout the evaluation as done previously by other [7, 37,
45, 58].

5.1.2 ImageNet-A

ImageNet-A is a small dataset of Natural Adversarial Examples published by
Hendrycks et al. [31]. It comprises 7500 Images from 200 ImageNet classes.
The classes have been selected such that misclassifications between them would
be considered egregious. For instance, confusion among dog races is, in gen-
eral, considered less critical than confusion among totally unrelated classes, for
example, dogs and cars [14].

5.1.3 Fooling Images

We use a dataset of 5000 fooling images provided by [45]. They have been gen-
erated for the AlexNet [37] using an evolutionary algorithm or gradient ascend.

Due to time limitations, we were unable to create images crafted explicitly for

CHAPTER 5. EVALUATION 55

the classifiers we tested. However, [45] claims that fooling images generalize well
to other neural network architectures, which we could confirm during our ex-
periments, as fooling images would be classified with relatively high confidence
in general. Thus, it is assumed that these images will be sufficient for a proof
of concept.

5.1.4 ImageNet 2010 OpenSet

As reported by [50], ImageNet 2010 contains 360 classes that were not included
in later releases of the dataset. As suggested by [7], the images of these classes
can be used as images of unknown classes for classifiers that have been trained
on newer versions of the ImageNet. They are suited for this task because they
share the general properties of the ImageNet images, e.g., there is usually one
object in the center of the image that occupies a large part of it. However, the
images depict objects that the classifier can not know.

5.1.5 Mix Dataset

Additionally, we create a composed set of images, from now on referred to asMix
Dataset, which includes images from each of the datasets mentioned above. As
there are 5000 publicly available fooling images, we drew 5000 images at random
from each other dataset and added them to the composition. The entire Mix
Dataset contains 20,000 images. Details are listed in Table 5.2.

Table 5.2: Composition of the Mix Dataset. All Images were drawn at random
without replacement from the entire datasets.

Dataset Images Ratio Used

Fooling Images 5000 25 % 100 %

ImageNet-A 5000 25 % 66.66 %

ImageNet 2017 Validation 5000 25 % 10 %

ImageNet 2010 OpenSet 5000 25 % 1.6 %

Mix Dataset 20000 100 % -

5.2 Convolutional Neural Networks

In this section, the CNNs for which self-assessment models were created will be
evaluated, emphasizing the ConSemble and safety aspects.

5.2.1 Evaluation Methodology

We aim to follow the evaluation protocol proposed in the ConSemble technical
report from Wehmeier [67]. However, the following modifications have been

56 5.2. CONVOLUTIONAL NEURAL NETWORKS

applied: Wehmeier reported the error rate for all models in order to emphasize
the safety perspective. However, accuracy is prevalent in the literature, so we
decided to report this metric as a performance measure instead. Consequently,
to evaluate the performance of the ConSemble, we compare its Top-1 and Top-
5-accuracy to that of its base models. Additionally, the scores for a Model-
Averaging (calculated as described in Equation 2.6) ensemble and a Majority-
Voting ensemble as baseline ensemble approaches are provided. Those models
will not be included in the evaluation of the self-assessment.

5.2.2 Results

In the following, we will report and discuss the results we obtained following the
evaluation protocol described above.

5.2.2.1 Accuracy

The Top-1-Accuracy for each network can be found in Table 5.3. The Top-5
accuracy is documented in Table 5.4. We omitted all datasets that contain im-
ages of unknown classes (i.e., the Fooling Image, the ImageNet 2010 OpenSet,
and the Mix Dataset), as the CNNs are by design unable to predict the correct
class or reject an image as unknown.

As we can see, the ConSemble approach achieves a better performance than any
of its base models, improving the absolute Top-1-accuracy1 of the best perform-
ing base model by approximately 1.4 %. However, the ConSemble seems to be
more likely to misclassify natural adversarial images than the Inception v3 or
the Xception architecture, which could be an indication of overfitting or inferior
generalization capabilities. This observation will be discussed further in Section
5.4.3.3. As we can see, the Xception model has lower accuracy on the training
set, and a higher accuracy on the Validation set compared to the Inception v3.
This indicates that the Xception network generalizes better than the Inception
v3. Additionally, this Xception has the highest accuracy on the natural ad-
versarial examples. The ConSemble performs better than Model-Averaging or
Majority-Voting, both of which are unable to increase the overall performance.
The fact that the baseline ensembles are unable to improve the predictions could
have multiple causes. We suspect the comparably low performance of the Vgg19
and a lack of diversity to be the most probable reasons (i.e., too few models were
included which do not make independent errors, see Section 2.3). It should be
mentioned that the implementation of majority voting that we chose assigns
confidence 1.0 to the instance that has the most votes, which entails that the
Top-1 and the Top-5 accuracy are identical in that case2.

1Sometimes the performance gain is reported in terms of a relative improvement over some
reference. In contrast, absolute accuracy denotes the actual performance gain on the dataset.

2If all three models disagree on the prediction, we take the prediction with the highest
softmax output

CHAPTER 5. EVALUATION 57

Table 5.3: Top-1-Accuracy

Model ImageNet Train ImageNet Val ImageNet-A

Vgg19 71.62 % 64.67 % 1.21 %

Inception v3 88.96 % 76.20 % 4.24 %

Xception 88.39 % 77.51 % 4.26 %

Model-Averaging 88.59 % 76.49 % 3.68 %

Majority-Voting 88.96 % 76.26 % 4.24 %

ConSemble 91.82 % 79.10 % 3.78 %

Table 5.4: Top-5-Accuracy

Model ImageNet Train ImageNet Val ImageNet-A

Vgg19 90.54 % 85.77 % 5.57 %

Inception v3 98.61 % 92.93 % 13.81 %

Xception 98.31 % 93.74 % 14.34 %

Model-Averaging 98.17 % 92.26 % 11.40 %

Majority-Voting 88.96 % 76.24 % 4.24 %

ConSemble 99.16 % 94.76 % 14.20 %

Furthermore, we evaluated which model obtained the highest top-1-accuracy on
a per-class basis. The results are displayed in the bar plots in Figure 5.1. The
ConSemble surpasses the performance of its base models for 36.3 % of classes
and performs as good as the best base model for 10.9 % of classes.

5.2.2.2 Base Model Errors

Following the evaluation protocol of [67], the common, shared and unique errors
of the model have been analyzed for the ImageNet 2017 validation set. Common
errors are errors that occur in all base models. Shared errors occur in at least

(a) Base-Models (b) Base-Models and Consemble

Figure 5.1: Number of classes for which a CNN dominated all other networks.

58 5.2. CONVOLUTIONAL NEURAL NETWORKS

(a) Common (b) Shared (c) Unique

Figure 5.2: Intersection of errors for different Models

two of the base models, but are not common. Unique errors are errors that are
being made by exactly one model. For ease of understanding, the concept of
intersecting errors is visualized in Figure 5.2. We did not consider the concrete
prediction into this evaluation but solely evaluated whether the classification
was correct or incorrect. For instance, if an image of a dog is misclassified
two times, once as a car and once as a cat, this still counts as a shared error,
even though the predictions differ. The results for the base models are listed in
Table 5.5. The Vgg19 Model is responsible for the majority (74.61 %) of the
unique errors within the base models, which is to be expected considering its
comparably weak performance.

Table 5.5: Intersection errors of base models for the ImageNet 2017 Validation
Dataset

Model Errors

Common Shared Unique Total

Vgg19 7762 3783 6103 17647

Xception 7762 2619 862 11243

Inception v3 7762 2890 1214 11866

Aggregated 7762 4646 8179

5.2.2.3 Ensemble Errors

As described in Section 2.3, ensemble methods are used to compose classifiers
that surpass the performance of each base model. In order to do so, ensembles
have to correct common, shared, or unique errors of their base models. On the
other hand, they should introduce as few new errors - i.e., errors that have not
been made by any of its base models - as possible. Table 5.6 lists the newly
introduced errors and the corrected errors for each considered ensemble tech-
nique.

By design, the voting-based ensemble is unable to correct common errors, but

CHAPTER 5. EVALUATION 59

can also not introduce new errors. The Ensemble-Averaging model did not in-
troduce new errors. However, it corrected 20 of the errors made by all of its
base models. The ConSemble approach corrected 434 common errors but also
introduced 98 new errors.

These results again highlight an obstruction for the deployment of ConSembles
(and non-voting based ensemble methods in general) in safety-critical appli-
cations. While the ensemble technique increases the performance beyond the
performance of the base models, and thereby reduces the number of overall er-
rors, it also carries the potential to introduce new errors. This behavior implies
that, even if tests verify that some convolutional neural networks meet certain
safety requirements, these properties can not necessarily be transferred to a
convolutional or mean-ensemble of these networks.

Table 5.6: Introduced and corrected errors for the ensemble models on the
ImageNet 2017 validation set.

Model New Errors Corrected Errors

Common Shared Unique

Majority-Voting 0 0 1256 6965

Ensemble-Averaging 0 20 1650 7166

ConSemble 98 434 2331 7474

5.2.2.4 Model Relevance

In [67], Wehmeier investigated which base-model was favoured by the ConSem-
ble by analysing the weights in the FC layer. The method can be compared
to the method vanilla CAM (as described in Section 2.4.3.1) uses in order
to determine the relevance of features. This straight forward approach is
applicable because their ConSemble architecture only uses a single dense layer.
In our case, this method can not be employed since we use multiple FC layers.
Therefore, in the following, we propose a method to estimate the relevance of
base models of a convolutional ensemble.

We can approximate the relevance of specific inputs across multiple dense
layers by utilizing the approach GradCAM uses to calculates the relevance of
inputs. Consider a convultional ensemble with a set of base models M , and
a set of images X. Every base model m ∈ M feeds some embedding vector
ϕ(x) = y = [y1, ..., yn] where y ∈ Rn into the convolutional ensemble. For
an image x ∈ X, we can estimate the relevance Rc

yn of each element in yn
in the embedding vector y using the Equation 3.1. Afterwards, we weight
each activation with its relevance and sum up the absolute values for each
model m (Equation 5.1). Weighting the activations with their sensitivity

60 5.3. SELF ASSESSMENT

Table 5.7: Estimated relevance of base models for the decision of the ConSemble.
We approximated the relevance of the base models for each instance in the
ImageNet sets and calculated the mean and the standard deviation σ — all
values in percent.

Model Average Model Relevance σ

Imagenet 2017 Val

Vgg19 23.26 7.87

Xception 26.65 3.92

Inception v3 50.08 6.76

Imagenet 2017 Train

Vgg19 23.31 7.81

Xception 26.84 3.89

Inception v3 49.84 6.68

values is motivated by the explanation given in Section 3.3.2.3. This result-
ing relevance Rc

m approximates the impact m had on the ConSemble’s decision.

We then scale this value, by dividing it by the sum of all Rc
m (Equation 5.2).

This scaling ensures that the model relevance values sum up to one. Finally, we
calculate the mean of the model relevance scores over all images in the given set
to obtain the approximated relevance of the entire model over the dataset.

Rc
m =

∑
n

|ynRc
yn | for each m ∈ M (5.1)

R̂c
m =

Rc
m∑

i∈M Rc
i

(5.2)

The results are listed in Table 5.73. Apparently, the ConSemble favors the
Inception v3 and assigns an approximately similar weight to the output of the
other convolutional base models. The tendency to assign higher relevance to
base models with better performance has already been observed by Wehmeier.

5.3 Self Assessment

In this section, the results of the experiments conducted to evaluate the self-
assessment methodology proposed in Chapter 3 will be presented. All results
apply to a self-assessment model based on K-Means clustering with five cluster
centers since we found that it provided the best performance tradeoff between

3The results should be taken with a grain of salt, as the design of methods to estimate the
relevance of base models for a convolutional ensemble is not in the scope of this thesis. As of
now, we have not verified the results on other models.

CHAPTER 5. EVALUATION 61

different datasets. Additional results for other self-assessment models can be
found in appendix A.

The following section will introduce the evaluation methodology, while the subse-
quent sections will present the results we obtained by applying this methodology
for each dataset individually.

5.3.1 Evaluation Methodology

Failure prediction can be seen as binary classification problem. The self-
assessment model predicts whether a prediction is either correct or incorrect
(i.e. one or zero, true or false, positive or negative). Usually, the classifier out-
puts a continuous value between zero and one that estimates the probability a
failure (or the confidence) and then applies a threshold to reduce the continuous
to a binary value. [19]. As the choice of this threshold depends on the desired
properties of the systems, scores are usually evaluated for varying thresholds.
In our setup, the positive class denotes correctly classified images. Therefore, a
high confidence value corresponds to a high probability for the classifier’s pre-
diction being correct.

Since there is, to the best of our knowledge, no prevalent evaluation proto-
col for self-assessment models, we will evaluate our models regarding multiple
evaluation criteria and report the results for all of them. In the following, the
evaluation criteria that we use will be introduced.

5.3.1.1 Receiver Operator Characteristic

A means to visualize and evaluate the performance of binary classifiers with
continuous output is the Receiver Operating Characteristic [19]. This method
has been used in several publications concerning self-assessment [30]. The graph
characterizes the dependency between the hit rate (True Positive Rate) and the
false alarm rate (False Positive Rate). This is, in general, more meaningful
than the plain accuracy. The ROC is constructed by gradually increasing the
threshold at which a prediction is treated as belonging to the positive class,
while plotting the resulting FPR on the x-axis against the TPR on the y-axis.
The choice of TPR and FPR (or the threshold) is usually a tradeoff. Which
threshold is to be preferred depends on the requirements of the specific use
case. For instance, in a high-security context where false-negatives can not
be tolerated (consider, for example, the search for weapons at airports), one
should choose a low threshold, so instances have to obtain low confidence (i.e.,
high probability of not carrying weapons) to be classified as negatives. While
this will lead to a higher hit rate (more people that actually carry weapons are
detected), it will also increase the number of false alarms (falsely accusing people
of carrying weapons). In order to compare the characteristics of two systems,

62 5.3. SELF ASSESSMENT

they are usually rated by the area under the ROC or AUROC for short. An
AUROC of 0.5 corresponds to random guessing.

For each of the self-assessment models (one model per feature and per CNN),
the ROC curve and AUROC scores will be provided and compared to softmax-
thresholding as proposed by [30].

5.3.1.2 F1-Score

Several publications plot the F1-score against the threshold [7, 51] for the eval-
uation. The F1-score is calculated as

F1 =
true-prositive

true-positive + false-negative + false-positive
(5.3)

A caveat of the F1-score is that is assigns equal weight to false-positives and
false-negatives, which may be inappropriate, depending on the use case.

5.3.1.3 Accuracy

As mentioned earlier, images from the fooling image dataset or the ImageNet
2010 OpenSet subset can, by design, never be classified correctly by the CNNs.
This entails that there can be no true-positives (i.e., correctly classified images),
which makes it infeasible to determine the ROCs or F1-scores. Therefore, we
will plot and compare the accuracy against a threshold for these datasets, as
others did [7]. The conclusions drawn from these diagrams have to be taken
with a grain of salt because the accuracy is inflated by the high proportion of
negative examples [7]. Contemplating the fooling image dataset, a model that
outputs 0.0 confidence, regardless of the input, would achieve 100 % accuracy at
any threshold. Thus, high accuracy for fooling images or open images alone can
not serve as an indicator of reliable self-assessment capabilities, which is one of
the reasons that motivated us to create the Mix dataset.

5.3.2 ImageNet 2017

In this section, the results for the ImageNet 2017 validation set will be presented.
We will evaluate the performance of the self-assessment models utilizing the
ROC and the F1-scores.

5.3.2.1 Vgg19

Figure 5.3 depicts the ROCs of the self-assessment models for the Vgg19. None
of the self-assessment models exceeds the softmax-score, but all models surpass
random guessing. The performance of the models using the relevance scores is
higher than the performance of the model based on the activations only.

CHAPTER 5. EVALUATION 63

Figure 5.3: Vgg19: ROC for the ImageNet validation set

The F1-scores for varying thresholds are depicted in Figure 5.4. The results
resemble the results of the ROCs. The graphs for the Mean Relevance and the
Weighted Activation are similar. The self-assessment models F1-scores degrade
earlier than the performance of the baseline; however, the performance of the
Mean Activation-based model falls at a slower rate compared to the other models
and even surpasses the other models at a threshold of 0.75.

5.3.2.2 Inception v3

Figure 5.5 depicts the ROCs of the self-assessment models for the Inception v3.
Again, none of the self-assessment models surpasses the baseline, but all models
exceed random guessing by a wide margin. The model based on the Weighted
Activation yields the best performance, beating the models based on activation
or relevance alone. Compared to the Vgg19, the Mean Activation yields better
results in terms of the AUROC. However, the Mean Activation-based models
ROC slightly surpasses the ROC of the Weighted Activation-based model for
higher thresholds.

Figure 5.6 displays the F1-scores. Again we observe that the performance of the
model based on the Mean Activation degrades slower for rising thresholds.

64 5.3. SELF ASSESSMENT

Figure 5.4: Vgg19: F1 curves for the ImageNet validation set

Figure 5.5: Inception v3: ROC for the ImageNet validation set

CHAPTER 5. EVALUATION 65

Figure 5.6: Inception v3: F1 curves for the ImageNet validation set

5.3.2.3 Xception

Figure 5.7 depicts the ROCs of the self-assessment models for the Xception
CNN. The results are similar to the ones for the Inception v3. All models surpass
random guessing, while none exceeds the baseline. The model combining the
relevance and the activation yields the best AUROC score of the self-assessment
models, but the ROC of the model based on the activation alone is slightly
better for FPRs > 0.45.

The corresponding F1-scores are provided in Figure 5.8. In general, they support
the findings of the ROC-based evaluation. Similar to the Inception v3 and the
Vgg19, the scores of the Mean Activation-based model degrade at a slower rate
compared to models based on other features. However, the model based on the
Mean Relevance slightly surpasses the other models for lower thresholds, which
does not quite suit the results of the ROC.

5.3.2.4 ConSemble

The ROCs of the self-assessment models regarding the ConSemble are presented
in Figure 5.9. Again, all models surpass random guessing but do not exceed the
softmax-thresholding-baseline. Similar to Vgg19, Inception v3, and Xception,
the self-assessment models that include the relevance perform better than the

66 5.3. SELF ASSESSMENT

Figure 5.7: Xception: ROC for the ImageNet validation set

model based on the activations only. Compared to the results obtained for
other CNNs, we notice the following: while the AUROC of the self-assessment
models based on the relevance is higher than for the other CNNs, the AUROC
of the Mean Activation is lower than for the Xception and the Inception v3
architecture. Again, the ROC of the Mean Activation-based model slightly
surpasses the ROC of the relevance-derived models for high FPRs.

The corresponding F1-scores are provided in Figure 5.10. While the relevance-
based models initially dominate the model based on the Mean Activation feature,
the later excels for thresholds > 0.6, because its performance degrades at a lower
rate. The graphs of the relevance-based models approach zero for thresholds
> 0.8. This indicates that very few of the predictions in the ImageNet validation
set receive a confidence score larger than this value.

5.3.2.5 Evaluation

The results show that the self-assessment, while inferior to the softmax-
thresholding, continually surpasses random guessing. We observe that for the
ImageNet validation set, the Weighted Activation-based model performs better
than the Mean Activation- or the Mean Relevance-based ones.

We conclude that self-assessment models that combine the activation and the

CHAPTER 5. EVALUATION 67

Figure 5.8: Xception: F1 curves for the ImageNet validation set

relevance of neurons can surpass the performance of self-assessment models
based on patterns in the activation alone. Furthermore, we observed that the
relevance-based models are surpassed by the Mean Activation-based model for
larger thresholds or higher FPR. This is caused by the fact that the relevance
based models assign lower confidence scores in general. We deduce from this be-
havior that the attribution values for unseen instances tend to be further apart
from their nearest cluster center than the activation values. This suggests that,
for (unseen) instances of a particular class, the relevance the classifier assigns
to neurons varies to a higher degree than the activation of those neurons. The
2D-Projection of the activation and attribution-clusters provided in Figure 3.3
and 3.5 substantiate this conclusion, since the attribution-clusters appear to be
more intertwined, indicating that the attributions are more scattered.

5.3.3 ImageNet-A

In this section, the results for the ImageNet-A, that contains natural adversarial
images will be presented. We omit the F1-scores for this dataset, since the scores
are low in general and do not contribute to the general findings of this section.

68 5.3. SELF ASSESSMENT

Figure 5.9: ConSemble: ROC for the ImageNet validation set

Figure 5.10: ConSemble: F1 curves for the ImageNet validation set

CHAPTER 5. EVALUATION 69

Figure 5.11: Vgg19: ROC for the ImageNet-A

5.3.3.1 Vgg19

Figure 5.11 depicts the ROC of the self-assessment models for the Vgg19. The
performances of the self-assessment models deteriorate below random guessing.
The softmax-thresholding baseline, on the other hand, surpasses random guess-
ing by a wide margin.

5.3.3.2 Inception v3

Figure 5.12 depicts the ROC of the self-assessment models for the Inception v3.
Again, the performance of the self-assessment models is surpassed by random
guessing. Compared to the Vgg19, the softmax-thresholding presents a lower
AUROC but still exceeds random guessing. While the Mean Activation-based
score is close to random guessing, the self-assessment models that employ the
relevance exhibit an even weaker performance.

5.3.3.3 Xception

Figure 5.13 depicts the ROC of the self-assessment models for the Xception
CNN. The results are similar to the ones obtained for the Inception v3 recog-
nition system, except that the Mean Activation based model performs slightly
better than random guessing. Again the models employing the relevance per-
form significantly worse compared to random guessing.

70 5.3. SELF ASSESSMENT

Figure 5.12: Inception v3: ROC for the ImageNet-A

Figure 5.13: Xception: ROC for the ImageNet-A

CHAPTER 5. EVALUATION 71

Figure 5.14: ConSemble: ROC for the ImageNet-A

5.3.3.4 ConSemble

Figure 5.14 depicts the ROC of the self-assessment models for the convolutional
ensemble. The results are similar to the ones obtained for the Inception v3 and
the Xception CNN. While the model based on the Mean Activation is close to
random guessing, the performance of the models based on Mean Relevance and
the Weighted Activation is significantly lower.

5.3.3.5 Evaluation

In summary, the self-assessment models fail to detect natural adversarial ex-
amples, especially models that rely on the relevance scores. However, the de-
sign of our model allows us to draw conclusions from this behavior. For the
ImageNet-A, the activation of neurons, as well as their relevances, are similar
to the activations and relevances of correctly classified images observed during
training. This implies that the convolutional layers tend to map natural ad-
versarial images close to the cluster centers. Moreover, the relevance scores do
not seem to exhibit any anomalies. This leads us to the conclusion that the
feature extraction in the convolutional layers of a CNN is responsible for the
weak performance of recognition systems for natural adversarial images, and
not the dense layers. In the feature space, the natural adversarial images “look”
similar to the correctly classified images observed during the training. This ap-

72 5.3. SELF ASSESSMENT

plies even more to the relevances since the performance for models based on
the Mean Relevance, and the Weighted Activation is significantly lower than
random guessing.

Nguyen et al. [45] stated that the reason for the apparent inability of CNNs to
make reliable predictions for natural adversarial images is their over-reliance on
color and texture, and their disregard of other cues like, for example, the shape
of the detected object. Therefore, we conclude that the features extracted by
the convolutional layers are, in general, those features that Nguyen deems re-
sponsible for the failing of CNNs for natural adversarial images.

These findings support the premiss of [67], who assumed that the majority of
the learning process takes place in the convolutional layers. Consequently, when
trying to remedy the weak performance of CNNs regarding natural adversarial
images, it seems reasonable to focus on the features extraction process.

5.3.4 Fooling Images

In this section, the results for the Fooling Image Dataset will be presented. As
mentioned earlier, it is not feasible to calculate the ROC or F1-scores, because
the dataset only contains images that can by design not be classified correctly by
the recognition systems. Therefore, we will use the Accuracy-against-Threshold
plots to evaluate the models for this dataset.

5.3.4.1 Vgg19

The accuracy of the self-assessment models for the Vgg19 CNN is depicted
in Figure 5.15. All models surpass random guessing, as well as the softmax-
thresholding-baseline. Mean Activation andWeighted Activation achieve similar
performance.

5.3.4.2 Inception v3

The accuracy of the self-assessment models for the Inception v3 CNN is depicted
in Figure 5.16. Unlike for the Vgg19, the Mean Activation exceeds all other
models by a wide margin. In the case of the Mean Activation, about 90 % of
the fooling images receive confidence < 0.2. The self-assessment based on the
relevance only, however, achieves lower accuracies than the other self-assessment
models, but always outperforms the baseline.

5.3.4.3 Xception

Figure 5.17 depicts the accuracy of the self-assessment models for the Xcep-
tion CNN for varying thresholds. Compared to the Inception v3, the softmax-
thresholding performs slightly better, while the performance of the model based

CHAPTER 5. EVALUATION 73

Figure 5.15: Vgg19: Accuracy curves for the Fooling Images

on the Mean Relevance feature drops. As a result, the Mean Relevance-based
model is surpassed by the baseline for lower thresholds. The accuracies of the
models employing the neural activation resemble the performance of the corre-
sponding models for the Inception v3.

5.3.4.4 ConSemble

Figure 5.18 depicts the accuracy characteristic of the self-assessment models for
the convolutional ensemble. The performance of the self-assessment exceeds the
performance of the other CNNs. The Mean Activation rejects fooling images
exceptionally well, approaching 1 for thresholds > 0.1, indicating that none of
the fooling images receive higher confidence. The self-assessment based on the
relevance only is again surpassed by the baseline for lower thresholds, while the
performance of the model combining activation and relevance resides between
the other two classifiers.

5.3.4.5 Evaluation

In summary, we find that the self-assessment models detect fooling images with
higher accuracy than the softmax-thresholding. Models that include the neural
activation (i.e., the Mean Activation and the Weighed Activation) achieve sig-
nificantly higher scores than the baseline. Especially the self-assessment model

74 5.3. SELF ASSESSMENT

Figure 5.16: Inception v3: Accuracy curves for the Fooling Images

of the ConSemble seems to be resistant to this type of image.

We conclude that the activation-maps extracted from fooling images signifi-
cantly differ from the activation-maps of correctly classified images observed
during the training. We suspect that this is caused by missing contextual cues,
which can typically be found in the background of an image of a particular
class. The fooling images resemble patterns that are similar to the textures of
the mimicked object, but they do not include other textures usually present
in images of that class. This holds for the attribution-maps as well, but to a
lesser degree. Still, the overall performance of attribution-based self-assessment
continually surpasses the performance of random guessing and in general, also
the performance of softmax-thresholding.

5.3.5 ImageNet 2010 OpenSet

In this section, the results for the ImageNet 2010 OpenSet dataset will be pre-
sented. Similar to the fooling images, we will evaluate the accuracy regarding
varying thresholds.

CHAPTER 5. EVALUATION 75

Figure 5.17: Xception: Accuracy curves for the Fooling Images

Figure 5.18: ConSemble: Accuracy curves for the Fooling Images

76 5.3. SELF ASSESSMENT

5.3.5.1 Vgg19

The accuracy of the self-assessment models for the Vgg19 CNN is depicted
in Figure 5.19. All self-assessment models surpass random guessing. Models
incorporating the relevance also outperform the baseline.

Figure 5.19: Vgg19: Accuracy curves for the ImageNet 2010 OpenSet

5.3.5.2 Inception v3

The accuracy of the self-assessment models for the Inception v3 is depicted in
Figure 5.20. All self-assessment models exceed random guessing, as well as the
softmax-thresholding by a wide margin. Contrary to the results for the Vgg19,
models using features from the activation-maps yield the better performance.

5.3.5.3 Xception

Figure 5.21 presents the results of the self-assessment models for the CNN based
on the Xception architecture. Analog to the fooling images presented in the
previous chapter, the softmax-thresholding achieves slightly higher performance
compared to the Inception v3 CNN. The accuracy of the self-assessment models
is similar to the results observed for the Inception v3.

CHAPTER 5. EVALUATION 77

Figure 5.20: Inception v3: Accuracy curves for the ImageNet 2010 OpenSet

Figure 5.21: Xception: Accuracy curves for the ImageNet 2010 OpenSet

78 5.3. SELF ASSESSMENT

Figure 5.22: ConSemble: Accuracy curves for the ImageNet 2010 OpenSet

5.3.5.4 ConSemble

The accuracy of the convolutional ensemble is presented in Figure 5.22. The
softmax-thresholding deteriorates below random guessing and is outperformed
by all self-assessment models by a wide margin. The model based on the
Weighted Activation exceeds the accuracy of all other models.

5.3.5.5 Evaluation

We conclude that the self-assessment models can detect images of unknown
classes from the ImagenNet 2010 OpenSet with higher accuracy than the
softmax-thresholding. However, the results are not as precise as for the fooling
images. We suspect that this is because, unlike fooling images, images of this
dataset contain background-cues and are therefore mapped closer to the region
of the feature space where the images of the predicted class usually reside. The
attribution based models, on the other hand, yield almost similar performance
as for the fooling images.

5.3.6 Mix Dataset

In this Section, the results for the Mix Dataset will be presented. We will report
the ROCs, as well the F1-scores.

CHAPTER 5. EVALUATION 79

Figure 5.23: Vgg19: ROC for the Mix Dataset

5.3.6.1 Vgg19

The graphs in Figure 5.23 depict the ROC of the self-assessment models for
the Vgg19. All self-assessment models surpass random guessing but achieve
lower AUROCs than the softmax-thresholding. The self-assessment models that
employ the relevance (i.e., Mean Relevance and Weighted Activation) exhibit
similar performance, while the model based on the Mean Activation performs
significantly worse.

Figure 5.24 depicts the F1-score for varying thresholds of the self-assessment
models for the Vgg19. The F1-scores are in line with the ROCs. While the Mean
Activation based self-assessment model achieves the lowest scores, the models
incorporating the relevance perform similarly. None of the self-assessment mod-
els continually surpasses the baseline. However, the self-assessment seems to
work better than the baseline for a threshold lower than 0.3. The performance
of the Mean Relevance- and the Weighted Activation-based model degrade for
thresholds > 0.6 and approach zero at around 0.9. This indicates that almost
none of the correct predictions receives confidence scores above 0.9, leading to
a small number of true-positive and a large number of false-negatives.

80 5.3. SELF ASSESSMENT

Figure 5.24: Vgg19: F1 curves for the Mix Datase

5.3.6.2 Inception v3

The plots in Figure 5.25 depict the ROC of the self-assessment models for the
Inception v3 CNN. All self-assessment models surpass random guessing. The
model based on the relevance alone yields the lowest performance, while the
model based on the Mean Activation surpasses the softmax-thresholding base-
line, particularly for lower FPRs. The performance of the model based on the
Weighted Activation lies between the other two models.

Figure 5.26 depicts the F1-score for varying thresholds of the self-assessment
models for the Inception v3. The F1-scores differ slightly from the results of the
ROCs. The graphs reveal that the self-assessment models perform better for
lower thresholds. However, at thresholds > 0.6, all self-assessment models are
surpassed by the baseline. Nevertheless, the F1-scores confirm that the models
employing the activation perform better than the model based on the relevance
only.

5.3.6.3 Xception

The graphs in Figure 5.27 depicts the ROC of the self-assessment models for
the CNN based on the Xception architecture. The ROCs are similar to the
ones for the Inception v3. Only the Mean Activation-based model surpasses

CHAPTER 5. EVALUATION 81

Figure 5.25: Inception v3: ROC for the Mix Dataset

Figure 5.26: Inception v3: F1 curves for the Mix Datase

82 5.3. SELF ASSESSMENT

Figure 5.27: Xception: ROC for the Mix Dataset

the softmax-thresholding. The Mean Relevance-based model exhibits the low-
est performance.

Figure 5.28 depicts the F1-score. It confirms the results of the ROC, but again
reveals that the self-assessment models yield optimal performance for lower
thresholds and are surpassed by the baseline for thresholds > 0.5.

5.3.6.4 ConSemble

The graphs in Figure 5.29 depicts the ROC for the self-assessment models of
the convolutional ensemble. None of them exceed the baseline, but all of them
surpass random guessing. Compared to the ROCs of the other CNNs, all self-
assessment models achieve significantly better performance, and the differences
between the models are smaller.

Figure 5.30 depicts the F1-score for the self-assessment models of the ConSemble.
The results resemble the findings for the other CNNs. While the self-assessment
models exhibit optimal performance for lower thresholds, the scores degrade
drastically for thresholds > 0.6. At that point, the models are surpassed by the
baseline. Similarly to other experiments, we observe that the performance of the
model based on the Mean Activation degrades more slowly than the performance
of the other models.

CHAPTER 5. EVALUATION 83

Figure 5.28: Xception: F1 curves for the Mix Datase

Figure 5.29: ConSemble: ROC for the Mix Dataset

84 5.3. SELF ASSESSMENT

Figure 5.30: ConSemble: F1 curves for the Mix Dataset

5.3.6.5 Evaluation

We conclude that all models outperform random guessing for the Mix Dataset.
The self-assessment models based on the Mean Activation feature match the
performance of the softmax-thresholding and sometimes surpass it. For the
ConSemble, the Xception, and the Inception v3, the F1-scores surpass the base-
line for lower thresholds. We suspect that this is because the self-assessment
models assign lower confidence values to images than the softmax in general. As
observed during the evaluation of previous datasets, correct predictions rarely
receive confidence > 0.8. We presume that this behavior is inherent to the de-
sign of the proximity-based model.

Consider, for instance, a prediction with a confidence of 0.5. This score indicates
that 50 % of the correctly classified instances observed during training resided
in a greater distance to the nearest cluster center. We argue that such a predic-
tion should be accepted since rejecting predictions with confidence < 0.5 would
entail that half of the correct predictions in the training set would be rejected
as well.

CHAPTER 5. EVALUATION 85

5.4 Discussion

In this section, the outcomes of the conducted experiments will be discussed
further.

5.4.1 Comparison to other Approaches

At first, the performance of the proximity-based statistical model will be com-
pared to other approaches. However, we notice that it is difficult to compare
the performance of our self-assessment model to other state-of-the-art methods.
The primary reason is that for many publications, neither the dataset(s) nor
the code is publicly available. Furthermore, as mentioned in Section 5.3.1, there
seems to be no unified evaluation protocol.

Table 5.8: AUROC values for the self-assessment models based on the Mean
Activation (MA), the Mean Relevance (MR) and the Weighted Activation (WA).
The best score for the self-assessment models is highlighted. Baseline refers to
softmax-thresholding.

Network MA MR WA Baseline

Mix Dataset

Vgg19 0.596 0.754 0.752 0.858

Inception v3 0.856 0.738 0.807 0.848

Xception 0.857 0.699 0.791 0.845

ConSemble 0.876 0.793 0.832 0.896

ImageNet 2017 Validation

Vgg19 0.591 0.735 0.751 0.855

Inception v3 0.733 0.730 0.779 0.846

Xception 0.732 0.701 0.751 0.847

ConSemble 0.724 0.791 0.801 0.865

ImageNet-A

Vgg19 0.397 0.459 0.417 0.681

Inception v3 0.489 0.413 0.440 0.582

Xception 0.527 0.440 0.448 0.607

ConSemble 0.491 0.424 0.430 0.591

5.4.1.1 Comparison to OpenMax

The OpenMax-Layer proposed by Bendale et al. [7] has been described in
Section 2.6.3.3. Bendale et al. explain how their test-dataset was created,
but as far as we know, the images are not publicly available. Moreover,
their study was concerned with the AlexNet architecture, which has a much
lower base performance than the models we used (57.1 % on the ImageNet

86 5.4. DISCUSSION

2012 validation set) [37]. Furthermore, their experiments were based on the
ImageNet 2012. We noticed that Bendale et al. reported the F1-score of
their approach for thresholds between 0 and 0.45, which is approximately the
threshold-range where our self-assessment models perform best (see, e.g., Fig-
ure 5.30). For this threshold-range, they report a relative improvement over
the peak of the softmax-thresholding of 4.3 %. If we consider the ConSemble
self-assessment based on the Mean Activation feature and ignore all F1-scores
for thresholds > 0.45, we would achieve a relative performance gain over the
softmax-thresholding-peak of 17.9 %. However, if we also include the thresh-
olds above 0.45, the highest self-assessment score is 3.6 % lower than the peak
of the softmax-thresholding. Therefore, we can not directly compare our self-
assessment model to the OpenMax.

5.4.1.2 Comparison to Confidence Estimation Branch

The Confidence Estimation Branch approach proposed by Devries et al. (de-
scribed in Section 2.6.3.1) reported AUROCs > 0.99, which exceeds the self-
assessment capabilities of our models. However, their experiments were based
on smaller datasets, for example, the TinyImageNet, which features 200 Ima-
geNet classes with 500 images per class with a size of 64×64 pixels. The dataset
we used contains five times more classes, 13 times more images, and between 12
and 21 times more pixels per image - depending on the respective CNN.

Additionally, the Confidence Estimation Branch employs a neural network for
the self-assessment. Consequently, even though the results of our self-assessment
models do not match the results of Devries et al., our models provide a higher
degree of explainability.

5.4.2 Attribution based Self-Assessment

In this section, the findings for the experiments will be summarized. Table 5.8
provides an aggregated overview of the AUROC for different datasets.

In Section 3.1, we argued that attribution-maps could be harnessed for self-
assessment. We expected them to exhibit clustering properties similar to the
activation-maps, which are already used in state-of-the-art approaches. The re-
sults of the experiments support this hypothesis. As we can see, the relevance
scores can indeed be harnessed for self-assessment, since the approach based on
the Mean Relevance feature performed significantly better than random guessing
in the majority of scenarios we tested. Because of the way the self-assessment
models are designed, we can deduce that the attribution-maps for correct pre-
dictions are, in general, more similar to the ones observed during training than
the attribution-maps for incorrect predictions.

For the ImageNet-A dataset, the performance of the attribution-based model

CHAPTER 5. EVALUATION 87

did, in fact, not surpass random guessing. However, neither did activation-based
models. This indicates that the properties of the natural adversarial images are
responsible for this behavior and not the approach itself. From the weakness
of the self-assessment models, we can infer that for natural adversarial images,
the assumption that the convolutional layers will map instances of the same
class to similar regions of the feature space is violated. We find that in the
case of the Xception, the Inception v3, and the ConSemble, the self-assessment
based on the Mean Activation produces more reliable confidence values. This
suggests that the clustering properties of the attribution-maps are not as distinc-
tive as for the activation-maps (see Section 5.3.2.5). However, the combination
of attribution- and neural activation-patterns (i.e., the Weighted Activation)
improved the self-assessment results for the ImageNet 2017 validation set for
all tested recognition systems. We conclude that attribution-maps can help to
identify recognition failures for “simple” images.

5.4.3 Comparison of Recognition Systems

In this section, the differences between the results of the CNNs will be addressed.

5.4.3.1 Xception and Inception v3

The results show that the Inception v3 and the Xception architecture achieve
comparable performance. We presume that this is because the Xception is a
derivative of the Inception v3 architecture. While the Xception (the name is
an abbreviation for Extreme Inception) achieves slightly higher accuracy, both
models are based on the same fundamental ideas. Consequently, their similar
performance is unsurprising.

5.4.3.2 Behavior of the Vgg19

The behavior of the Vgg19, on the other hand, diverges significantly from the
other two base CNNs. Most notable is the weak performance of self-assessment
models based on the Mean Activation. We suspect that there are multiple un-
derlying causes.

While Xception and Inception extract 2048 activation-maps, the Vgg19 only
extracts 512. Therefore, the overall weaker performance of the Vgg19 could be
caused by the smaller number of extracted features. The Vgg19 has to map the
same number of classes into separate regions of a vector space of lower dimen-
sionality than the other models, which is more complicated. Furthermore, unlike
the Vgg19, the Xception and Inception v3 flatten the extracted activation-maps
using global average pooling. Therefore, the Mean Activation of the Xception
and the Inception v3 is equal to their vector embedding. For the Vgg19, how-
ever, it is not. We suspect that the Mean Activation feature might not be as
representative for the Vgg19 as it is for the other models, because the Vgg19

88 5.4. DISCUSSION

is not required to learn good global average pooled features during training.
Comparing the scatterplots of the 2D vector embeddings in Figure 3.3, we no-
tice that the Vgg19’s feature embedding does not produce equally distinctive
clusters, which supports the considerations above. Nevertheless, the behavior
of the Vgg19 CNN requires further investigation.

5.4.3.3 Convolutional Ensemble

The ConSemble, in general, exceeds the performance of the base models in terms
of self-assessment and softmax-thresholding. As explained in Section 2.3.3, ac-
cess to a larger amount of extracted features (in our case 4608 pooled features)
allows the ConSemble to make more accurate predictions. While the existing lit-
erature on convolutional ensembles emphasized the accuracy gains, we find that
the ConSemble also surpasses its base models in terms of its self-assessment-
capabilities. The ConSemble did not only make more accurate predictions but,
for example, for fooling images, it made wrong predictions with lower confidence
compared to its base models4.

However, this does not hold for the ImageNet-A and the ImageNet 2010
OpenSet. For natural adversarial images, the ConSemble achieved a lower Top-
1-Accuracy, as well as a lower self-assessment score (AUROC) for both the
softmax and the self-assessment models. We suspect the following: The Con-
Semble has access to the same features as the base models. During the training,
the ConSemble learns which of these features allow it to make the best predic-
tions for the ImageNet training set, and favors these features for predictions. In
order to be able to make better predictions than the base models, the ConSem-
ble has to select and combine exactly those features from the model that work
best on the training set. We suspect that the features that allow the model to
make the most accurate predictions for the ImageNet tend to be the features
that are, according to Nguyen et al., responsible for the weakness of CNNs for
natural adversarial images, namely features based on color or texture. Thus,
the improved performance of the ConSemble on the “simple” images comes at
the price of weaker performance for “hard” images. For the ImageNet 2010
OpenSet, the ConSembles softmax-thresholding performance deteriorated be-
low random guessing. We suspect that this behavior is related to the causes
that led to decreased performance on the ImageNet-A - presumably overfitting
to the ImageNet.

4See, for example, Figure 5.18. The superior accuracy of the ConSemble for lower thresholds
indicates that fooling images, in general, receive lower confidences.

Chapter 6

Conclusion

This chapter provides the conclusion of the present thesis. We will first sum-
marize the content and afterward discuss the findings critically. From this dis-
cussion, we will derive perspectives for future work that aims to overcome the
limitations of this work, and present research questions that emerge from the
findings of this thesis.

6.1 Summary

In the first chapter of this thesis, we described the underlying pathologies con-
temporary CNNs suffer from: They are highly complex non-linear models that
can not be formally verified by contemporary means due to their vast number of
parameters. Therefore, these systems can not be proven to meet safety require-
ments. Secondly, the decisions made by artificial neural networks are difficult to
explain, and these recognition systems are, therefore, often described as black-
boxes that may fail unexpectedly [59]. Additionally, CNN-based visual recogni-
tion systems are prone to certain errors. We pointed out that these pathologies
constitute a problem in safety-critical environments. Based on these considera-
tions, we motivated approaches that aim to mitigate the potential safety-threat
posed by artificial neural networks deployed in real-world applications, as well as
methods to facilitate an understanding of the system’s decisions. We introduced
two conventional strategies: while the first one aims to improve the performance
of the systems such that errors are sufficiently improbable, the second approach
aims to detect recognition errors at runtime and thus provides the system with
the capability to fail gracefully in order to retain in a state that is considered
safe. Additionally, gradient-based attribution methods have been developed to
explain the decisions made by neural networks in hindsight by estimating which
parts of the input where most relevant for the decision. In that process, at-
tribution scores are assigned to neurons, that measure the importance of that
particular neuron for the prediction of the recognition system. We pointed out
that many of the state-of-the-art self-assessment approaches are based on as-

89

90 6.1. SUMMARY

sessing patterns in the activation of neurons, but - to the best of our knowledge
- no work seems to consider attribution methods for the detection of recognition
failures at runtime. Therefore, we proposed the usage of attribution values for
self-assessment.

In the second chapter, we provided an overview of work related to the proposed
approach. At first, we explained fundamental building blocks of CNNs, empha-
sizing the distinction between the convolutional layers that produce activation-
maps, the flattening that creates the vector embedding from the activation-
maps, and the fully connected layers that make predictions based on the em-
bedding vector. Afterward, the concept of transfer learning has been motivated
and explained. We provided an overview of ensemble methods, which aim to
improve the performance of neural networks. We proceed by introducing some
example attribution methods with the focus on CAMs. In the following, we
present the results of a literature survey that identified different types of images
that may cause recognition systems to fail. The chapter closed with a survey
of literature regarding existing self-assessment methods, which we loosely group
into categories based on the type of information they use for the assessment.

In the third chapter, we explained the explanation-based self-assessment ap-
proach proposed in the first chapter in detail. We provided arguments as well as
some empirical evidence to substantiate the idea. Subsequently, we presented
a framework that would allow us to create explanation-based self-assessment
models. Since an exhaustive evaluation of existing attribution-based explana-
tion methods would have exceeded the scope of this thesis, we focused on a
prototypical explanation approach, namely GradCAM. For GradCAM, the ex-
planation is calculated from the attribution- and activation-maps. We argued
that explanations that are similar to the explanations observed for correctly
classified examples during training could be regarded as evidence for correct
classifications, while dissimilar explanations indicate the opposite. Mathemat-
ically, the concept of similarity is usually expressed as a distance measured by
a particular metric. Therefore, we anticipated that the “similar” explanations
(i.e., the activation- and attribution-maps as used by GradCAM) form clusters
in a vector space. For simplicity, we assume that the shape of these clusters
is spherical. Consequently, we used the framework to developed a proximity-
based self-assessment model for the evaluation of the proposed self-assessment
approach. This model learns from the correctly classified training examples
what a “usual” explanation looks like by estimating the centers of the hyper-
spherical clusters of the activation- and attribution-maps. The fundamental
assumption utilized for the self-assessment is that “explanations” that are fur-
ther apart from these cluster centers are more“unusual” and therefore indicate a
higher likelihood of recognition failure. To inquire if the attribution-maps carry
the potential to improve the self-assessment, we created multiple models of the
same type but based on different features — one based on activation, one based

CHAPTER 6. CONCLUSION 91

on attribution, and one based on a combination of both.

In the Implementation chapter, we introduced the CNNs we used to evaluate the
self-assessment capabilities of our model. We explain why we chose these CNNs
and how they were trained. We proceeded by describing the implementation
of the proposed framework and the created models in particular. Ultimately,
we presented a demo application that allows users to try the self-assessment
models.

The fifth chapter explained our evaluation methodology, reported the results,
and discussed them. Initially, we described the datasets that were used during
the evaluation and also presented a new composed Mix Dataset that contains
the majority of image types we identified as responsible for recognition failures
in the literature survey. We presented results for the CNNs on these datasets,
following the evaluation protocol proposed by Wehmeier [67]. Afterward, we re-
ported the results for the self-assessment models on all datasets and compared
them to the softmax-thresholding. We found that the models based on the acti-
vation - as used in state-of-the-art self-assessment methods - achieved the best
performance. Especially fooling images could be detected with high accuracy.
As we anticipated, the self-assessment models using the attribution values signif-
icantly outperformed random guessing for almost every dataset. Therefore, we
concluded that it is possible to predict recognition errors by evaluating patterns
in the relevance of neurons. Natural adversarial images constitute an exception,
which led us to conclude that for these images, the relevance of neurons, as well
as the activations of neurons, are similar to the relevances and activations ob-
served for correct predictions. Furthermore, we found that the combination of
attribution and activation was able to outperform the model based on solely the
activation for the ImageNet 2017 validation set. This substantiates the propo-
sition that self-assessment methods harnessing attribution-based explanations
can improve the self-assessment beyond the approaches based on the neural
activation alone.

6.2 Limitations

This chapter will provide a critical reception of the findings of this thesis and
point out the flaws and limitations of the presented approach and the evaluation
methodology.

6.2.1 Reproducibility Considerations

The reproducibility of results is a crucial requirement imposed on scientific work.
In a paper published recently, Bouthillier et al. stated that many findings in the
field of deep learning are - according to their definition - not reproducible [8].
They assert that the term reproducability can refer to three different notions of

92 6.2. LIMITATIONS

reproducibility, each of which will be discussed in the following in regard to this
thesis.

6.2.1.1 Method Reproducability

Method Reproducability refers to reproducability in terms of deterministic out-
put. Running the same code with the same input twice should produce identical
results. In our experiments, we used a fixed seed for random number generators.
However, due to the stochastic nature of deep learning and k-Means clustering,
the results vary within certain bounds if we use other seeds1. In order to show
that the results meet this definition of reproducibility, Bouthillier et al. recom-
mend to calculate mean scores over multiple trainings, and to report the interval
bounds. In our case, the usage of publicly available, pre-trained networks mit-
igates this problem to some extent, as the predictions of these networks are
deterministic.

6.2.1.2 Results Reproducibility

Results Reproducibility refers tho the idea that a reimplementation of the same
method should yield statistically similar outcomes. A reimplementation of the
proposed framework is out of scope of this thesis. Thus, we are as of now
unable to make reliable statements concerning the results reproducibility of this
thesis. By publishing the proposed approach, we could facilitate the result
reproducability and encourage others to replicate our experiments.

6.2.1.3 Inferential Reproducibility

Inferential Reproducibility refers to the idea that results should be statistically
stable for other experimental setups, for example other datasets, or, in our case,
other CNNs. Since we provided evaluation results for multiple datasets, dif-
ferent clustering algorithms and different self-assessment models (see Appendix
A and B) we ensured a certain level of inferential reproducibility. However,
the results between the different image types diverged significantly, which was
broadly discussed in Chapter 5.

6.2.2 Self-Assessment Model

In this section, the limitations of the self-assessment model itself will be dis-
cussed.

1Even though we used a fixed seed for Tensorflow, we noticed deviations in the performance
of the trained ConSembles.

CHAPTER 6. CONCLUSION 93

6.2.2.1 Model Performance

The key finding of this thesis is that, in our experiments, the self-assessment
based on attribution outperformed random guessing and could in some cases
improve the self-assessment beyond the performance achieved using the acti-
vation alone. In line with the description of the scope of this work in Section
1.4, we favored a self-assessment model that is interpretable and allows us to
draw conclusions regarding the proposed approach, over a model with a better
performance that can not be explained. Since the created models did not out-
perform the softmax-thresholding by a wide margin, we should remain skeptical
about the generalizability of the findings to self-assessment models with better
performance.

6.2.2.2 Model Design

Furthermore, we could refine the present self-assessment model itself. At the
moment, we employ one sub-model per class. However, all class-models use
the same hyperparameters, i.e., the same clustering algorithm and the same
distribution-function for the distances. Figure 6.1 depicts histogram of AUROC
scores for individual classes. As we can see, there are classes for which the
self-assessment does not work as well as for others. We suspect that the per-
formance of the model could be enhanced by conducting a HPO for each class
individually.

Moreover, the proposed proximity-based model considers the distance of in-
stances to their nearest cluster, but is agnostic on which specific cluster center
has been closest. This could lead to the following problem: let us assume we
have two cluster centers for one class, A and B. Training instances distribute
densely around A but are much more scattered around B. We now encountered
an instance that is closest to A but resides in an unusually large distance from
it. The same distance, however, is usual for instances around B. We should
now be skeptical about the CNNs prediction since the instance is unusually far
away from A. However, the model, as described in this thesis, does not differ-
entiate between the two cluster centers and could thus be prone to accept the
instance. Therefore we suspect that the results could be improved by modeling
the density of instances around each cluster center individually.

6.2.3 Security Considerations

This work emphasized a safety perspective. The security of the proposed ap-
proach in environments that may be targeted by an omniscient2 adversary re-
mains questionable. We demonstrated that the self-assessment models are more

2By omniscient we mean that the adversary has access to the model.

94 6.2. LIMITATIONS

(a) Vgg19 (b) Inception v3

(c) Xception (d) ConSemble

Figure 6.1: Histogram of AUROC scores of the self-assessment model based
on the Mean Activation feature for individual classes in the ImageNet 2017
validation set. These histograms show that the lower performance of the Vgg19
precipitated by weaker performance in general, and not by a weaker performance
for particular classes only.

CHAPTER 6. CONCLUSION 95

robust to Fooling Images than the softmax. These Fooling Images were gen-
erated by maximizing the activation of a specific output neuron. However,
there are adversarial attacks that target deep feature embeddings [49]. Such
attacks undermine the underlying assumption of the self-assessment models -
that images whose activation/attribution are similar to the ones observed dur-
ing training are more likely to be classified correctly - by modifying the images
in a way that places their feature embeddings in the same region of the feature
space as the correctly classified training images. By leveraging this method, the
authors were able to defeat OpenMax (see Section 2.6.3.3), which is based on
a similar assumption. This suggests that the presented self-assessment model
could also be vulnerable to such an attack. Furthermore, a recent publication
demonstrated that it is possible to fool GradCAM using adversarial patches
[62]. These patches are able to change the prediction of the CNN arbitrarily,
but pixels in the patches are not highlighted by GradCAM, even though they
are responsible for the prediction. The authors conclude that GradCAM is not
a reliable method to highlight the relevant input. This suggests that, while the
self-assessment model may provide some security, it is probably not able to re-
sist attacks directly targeting the method itself.

To put these caveats into perspective, consider the following. If the proposition
of [21] proves true and the pathologies of CNNs are inherent to their architec-
ture, it seems reasonable to assume that an adversary with access to the model
might always be able to find means to defeat mechanisms implemented to defend
against adversarial attacks.

6.3 Future Work

In this section perspectives for future work will be presented.

6.3.1 Future Work on Convolutional Ensembles

We found that the Convolutional Ensemble was able to exceed the performance
of its base models in our experiments. However, as stated in Chapter 4, we
did not perform an exhaustive HPO for the ConSemble and suspect that the
performance could be improved further by extending the set of considered hyper-
parameters. We could, for example, include other weight initialization methods
or different optimizers, like Stochastic Gradient Descent3.

Apart from the point mentioned above, it seems promising to evaluate the per-
formance of the ConSemble when using a larger number of convolutional base
models with a variety of different architectures. To the best of our knowledge,

3Stochastic Gradient Descent is generally assumed to achieve better results than the Adam
optimizer if the parameters are carefully chosen. However, finding an optimal configuration
for these parameters usually requires additional compute.

96 6.3. FUTURE WORK

existing literature only reports experiments with up to three base models. We
expect an additional gain in performance when using a larger number of con-
volutional base models, as this would increase the variability in the models and
thereby increase the chance that at least one of the models can extract distinctive
features for a given image. There is, to the best of our knowledge, no publicized
work concerned with the comparison of the convolutional ensemble approach to
sophisticated dynamic ensembles or MoE approaches, like the Adaptive Fusion
method described in Section 2.3.2.

6.3.2 Future Work on Self-Assessment

The proposed approach is promising, as we demonstrated that it is possible to
increase the performance of a self-assessment model by using information cre-
ated by explanation methods.

Considering the limitations presented in Section 6.2, additional effort should be
directed towards ensuring the reproducibility of this finding. Future work should
assess the stability of the created approach, for example, by “training” multiple
self-assessment models with the same configuration and examining variations in
the results. Furthermore, the self-assessment method should be applied to addi-
tional CNNs and datasets. Using smaller datasets, for example, TinyImageNet,
MNIST, or Caltech 265, will facilitate the comparison to other state-of-the-art
techniques. It should also be tested if the self-assessment model provides equally
strong protection against fooling images crafted explicitly for the assessed CNN.
Furthermore, the performance for corrupted and adversarial images should be
investigated.

The flexibility of the proposed framework facilitates the development of other
self-assessment models based on the activation- and attribution-maps, as de-
scribed in Section 3.2. This should be leveraged to examine other explanation
methods, like Layer-Wise Relevance Propagation. Besides, we suspect that self-
assessment models based on neural networks, for example, CNNs, Siamese net-
works, or Auto Encoder, exceed the performance of the statistical model. Con-
cerning the limitations that addressed the performance of the self-assessment
model, we recommend testing the transferability of the proposed approach to
methods that trade explainability for performance. Furthermore, it might be
promising to extract additional features from the activation- and attribution-
maps that are more representative for the specific instance. For example, we
suspect that the results could be improved by incorporating the distribution
of the values in the activation-maps and not only mean values. For instance,
during some experiments at the inception of this thesis, we noticed that a CNN
we trained to discriminate between synthetic images of rectangles and circles of
different colors would achieve high accuracy in general, but had difficulties clas-
sifying objects located close to the border of images. This is merely anecdotal

CHAPTER 6. CONCLUSION 97

evidence; however, it illustrates the idea that the location of the detected object
in the image could be useful for self-assessment as well.

As stated in Section 2.4, gradient-based attribution methods like GradCAM are
not limited to convolutional neural networks, but can be applied to arbitrary
differentiable classifier [55, 4]. In natural language processing, for instance, the
approach of training a neural network to map the input to an embedding vector
for further processing is also common [15]. Attribution-based methods can be
used to estimate the relevance of a specific value in the embedding, or even the
relevance for specific words in the input [4]. Thus, the presented framework
could be applied to such tasks as well and is not necessarily limited to visual
recognition.

Within the scope of our literature survey, we have been unable to find publica-
tions concerned with multimodal self-assessment4. Combining information from
the Input, Output, Context, and Intermediate features (like neural activation
or attribution of intermediate layers) could potentially increase the performance
of self-assessment approaches.

4The work on context-based self-assessment did include the input of the classifier (i.e., an
image) into the assessment process [26]. However, the combination of multiple modalities was
not the primary focus of this work.

98 6.3. FUTURE WORK

Bibliography

[1] All Together Now! The Benefits of Adaptively Fusing Pre-trained Deep
Representations, February 2019.

[2] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. Tensorflow: A system for large-scale machine learning. In
12th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 16), pages 265–283, 2016.

[3] Thangarajah Akilan, Qingming Jonathan Wu, and Hui Zhang. Effect of
fusing features from multiple dcnn architectures in image classification. IET
Image Processing, 12(7):1102–1110, 2018.

[4] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards
better understanding of gradient-based attribution methods for deep neural
networks. arXiv preprint arXiv:1711.06104, 2017.

[5] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise ex-
planations for non-linear classifier decisions by layer-wise relevance propa-
gation. PloS one, 10(7):e0130140, 2015.

[6] Abhijit Bendale and Terrance Boult. Towards open world recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1893–1902, 2015.

[7] Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 1563–1572, 2016.

[8] Xavier Bouthillier, César Laurent, and Pascal Vincent. Unreproducible
research is reproducible. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages
725–734, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

99

100 BIBLIOGRAPHY

[9] Leo Breiman et al. Statistical modeling: The two cultures (with comments
and a rejoinder by the author). Statistical science, 16(3):199–231, 2001.

[10] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N
Balasubramanian. Grad-cam++: Generalized gradient-based visual expla-
nations for deep convolutional networks. In 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages 839–847. IEEE, 2018.

[11] François Chollet. Xception: Deep learning with depthwise separable con-
volutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1251–1258, 2017.

[12] François Chollet et al. Keras, 2015.

[13] Shreyansh Daftry, Sam Zeng, J Andrew Bagnell, and Martial Hebert. In-
trospective perception: Learning to predict failures in vision systems. In
2016 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 1743–1750. IEEE, 2016.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[16] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-
distribution detection in neural networks. arXiv preprint arXiv:1802.04865,
2018.

[17] Akshay Raj Dhamija, Manuel Günther, and Terrance Boult. Reducing net-
work agnostophobia. In Advances in Neural Information Processing Sys-
tems, pages 9157–9168, 2018.

[18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architec-
ture search: A survey. arXiv preprint arXiv:1808.05377, 2018.

[19] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006.

[20] Dimitrios Frosyniotis, Andreas Stafylopatis, and Aristidis Likas. A divide-
and-conquer method for multi-net classifiers. Pattern Analysis & Applica-
tions, 6(1):32–40, 2003.

[21] Ben Goertzel. Are there deep reasons underlying the pathologies of to-
day’s deep learning algorithms? In International Conference on Artificial
General Intelligence, pages 70–79. Springer, 2015.

BIBLIOGRAPHY 101

[22] Tim Gonschorek, Marco Filax, and Frank Ortmeier. A very first glance
on the safety analysis of self-learning algorithms for autonomous cars. In
37th International Conference on Computer Safety, Reliability, & Security
SAFECOMP2018SAFECOMP2018, 2018.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[24] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[25] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition
with recurrent neural networks. In International conference on machine
learning, pages 1764–1772, 2014.

[26] Corina Gurău, Dushyant Rao, Chi Hay Tong, and Ingmar Posner. Learn
from experience: probabilistic prediction of perception performance to
avoid failure. The International Journal of Robotics Research, 37(9):981–
995, 2018.

[27] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (10):993–1001,
1990.

[28] Simon Haykin. Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[29] Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural net-
work robustness to common corruptions and perturbations. CoRR,
abs/1903.12261, 2019.

[30] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassi-
fied and out-of-distribution examples in neural networks. arXiv preprint
arXiv:1610.02136, 2016.

[31] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn
Song. Natural adversarial examples. CoRR, abs/1907.07174, 2019.

[32] Chen Huang, Chen Change Loy, and Xiaoou Tang. Local similarity-aware
deep feature embedding. In Advances in neural information processing
systems, pages 1262–1270, 2016.

[33] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[34] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspec-
tives, and prospects. Science, 349(6245):255–260, 2015.

102 BIBLIOGRAPHY

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[36] Panagiotis Kouvaros and Alessio Lomuscio. Formal verification of cnn-
based perception systems. CoRR, abs/1811.11373, 2018.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[38] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples
in the physical world. arXiv preprint arXiv:1607.02533, 2016.

[39] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional
networks and applications in vision. In Proceedings of 2010 IEEE Interna-
tional Symposium on Circuits and Systems, pages 253–256. IEEE, 2010.

[40] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[41] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka.
Metric learning for large scale image classification: Generalizing to new
classes at near-zero cost. In European Conference on Computer Vision,
pages 488–501. Springer, 2012.

[42] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka.
Distance-based image classification: Generalizing to new classes at near-
zero cost. IEEE transactions on pattern analysis and machine intelligence,
35(11):2624–2637, 2013.

[43] Grégoire Montavon, Sebastian Bach, Alexander Binder, Wojciech Samek,
and Klaus-Robert Müller. Explaining nonlinear classification decisions with
deep taylor decomposition. CoRR, abs/1512.02479, 2015.

[44] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods
for interpreting and understanding deep neural networks. Digital Signal
Processing, 73:1–15, 2018.

[45] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 427–436, 2015.

[46] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and
transferring mid-level image representations using convolutional neural net-
works. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1717–1724, 2014.

BIBLIOGRAPHY 103

[47] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of machine learning research, 12(Oct):2825–2830, 2011.

[48] Luca Pulina and Armando Tacchella. An abstraction-refinement approach
to verification of artificial neural networks. In International Conference on
Computer Aided Verification, pages 243–257. Springer, 2010.

[49] Andras Rozsa, Manuel Günther, and Terrance E Boult. Adversarial robust-
ness: Softmax versus openmax. arXiv preprint arXiv:1708.01697, 2017.

[50] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211–252, 2015.

[51] Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and
Terrance E Boult. Toward open set recognition. IEEE transactions on
pattern analysis and machine intelligence, 35(7):1757–1772, 2012.

[52] Walter J Scheirer, Lalit P Jain, and Terrance E Boult. Probability mod-
els for open set recognition. IEEE transactions on pattern analysis and
machine intelligence, 36(11):2317–2324, 2014.

[53] Walter J Scheirer, Anderson Rocha, Ross J Micheals, and Terrance E
Boult. Meta-recognition: The theory and practice of recognition score
analysis. IEEE transactions on pattern analysis and machine intelligence,
33(8):1689–1695, 2011.

[54] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neu-
ral networks, 61:85–117, 2015.

[55] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the
IEEE International Conference on Computer Vision, pages 618–626, 2017.

[56] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning im-
portant features through propagating activation differences. In Proceed-
ings of the 34th International Conference on Machine Learning-Volume
70, pages 3145–3153. JMLR. org, 2017.

[57] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside con-
volutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034, 2013.

104 BIBLIOGRAPHY

[58] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[59] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu
Lakkaraju. How can we fool lime and shap? adversarial attacks on post
hoc explanation methods. arXiv preprint arXiv:1911.02508, 2019.

[60] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–
1958, 2014.

[61] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy
and policy considerations for deep learning in nlp. arXiv preprint
arXiv:1906.02243, 2019.

[62] Akshayvarun Subramanya, Vipin Pillai, and Hamed Pirsiavash. Fooling
network interpretation in image classification. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2020–2029, 2019.

[63] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 2818–2826, 2016.

[64] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

[65] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deep-
face: Closing the gap to human-level performance in face verification. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 1701–1708, 2014.

[66] Bill Vlasic and Neal E Boudette. Self-driving tesla was involved in fa-
tal crash, us says. https://www.nytimes.com/2016/07/01/business/

self-driving-tesla-fatal-crash-investigation.html, 2016. [Online;
accessed 9-December-2019].

[67] Leon Wehmeier. Consemble - variants of n-version programming for deep-
learning. Technical report, 2019.

[68] Danny Yadron and Dan Tynan. Tesla driver dies in first fatal crash while us-
ing autopilot mode. https://www.theguardian.com/technology/2016/

jun/30/tesla-autopilot-death-self-driving-car-elon-musk, 2016.
[Online; accessed 9-December-2019].

https://www.nytimes.com/2016/07/01/business/self-driving-tesla-fatal-crash-investigation.html
https://www.nytimes.com/2016/07/01/business/self-driving-tesla-fatal-crash-investigation.html
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk

BIBLIOGRAPHY 105

[69] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? In Advances in neural informa-
tion processing systems, pages 3320–3328, 2014.

[70] Peng Zhang, Jiuling Wang, Ali Farhadi, Martial Hebert, and Devi Parikh.
Predicting failures of vision systems. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3566–3573, 2014.

[71] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning deep features for discriminative localization. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
2921–2929, 2016.

106 BIBLIOGRAPHY

Appendix A

Alternative Clustering
Algorithms

This chapter provides supplementary results for the proximity-based self-
assessment model proposed in Section 3.

A.1 K-Means

The self-assessment model presented in this thesis employs the k-Means clus-
tering algorithm. The parameter k of this algorithm specifies the number of
assumed clusters. We evaluated the performance of our model for different val-
ues for k. Some example results are depicted in the Figures A.1 and A.2.

We noticed that, while different values for k impact the results on individual
datasets, the effects seem to even out for the composed Mix Dataset. As we can
see, while an increased amount of cluster centers leads to improved accuracy on
the ImageNet 2010 OpenSet, it slightly impairs the AUROC for the Mix dataset.
We decided to report the results for 5 cluster centers, as this would provide the
best tradeoff between different datasets.

A.2 Nearest Class Mean

This section contains results for the self-assessment model based on the Nearest
Class Mean clustering algorithm. The aggregated AUROCs are listed in Table
A.1.

The results confirm the findings of this thesis. The self-assessment models do
generally not outperform the softmax-thresholding. The Mean Relevance-based
model for the Vgg19 achieves a better performance than models based on other
features. Models using attribution-maps do not perform well on natural adver-
sarial images but can improve the results for the ImageNet validation set.

107

108 A.2. NEAREST CLASS MEAN

Figure A.1: ROC of the ConSemble using k-Means clustering with different
numbers of cluster centers on the Mix dataset.

Figure A.2: Accuracy of the ConSemble using k-Means clustering with different
numbers of cluster centers for the ImageNet 2010 OpenSet dataset.

APPENDIX A. ALTERNATIVE CLUSTERING ALGORITHMS 109

Table A.1: AUROC for the self-assessment models based on the Mean Activation
(MA), the Mean Relevance (MR) and the Weighted Activation (WA) using
NCM. The best scores for the self-assessment models are highlighted.

Network MA MR WA Baseline

Mix Dataset

Vgg19 0.607 0.698 0.739 0.858

Inception v3 0.850 0.661 0.777 0.848

Xception 0.861 0.588 0.772 0.845

ConSemble 0.873 0.739 0.815 0.896

ImageNet 2017 Validation

Vgg19 0.584 0.684 0.734 0.855

Inception v3 0.731 0.671 0.747 0.846

Xception 0.537 0.410 0.446 0.847

ConSemble 0.723 0.747 0.780 0.865

ImageNet-A

Vgg19 0.496 0.445 0.427 0.681

Inception v3 0.498 0.421 0.445 0.582

Xception 0.537 0.410 0.446 0.607

ConSemble 0.501 0.429 0.435 0.591

A.3 Affinity Propagation

In addition to the NCM, we also tested the affinity propagation clustering algo-
rithm. This clustering approach selects a number of prototypical instances from
the data. The algorithm determines the exact number of prototypes automati-
cally.

The aggregated results are depicted in Table A.2. In general, they confirm the
findings presented in the evaluation chapter: for the Mix dataset, the Mean Ac-
tivation feature works best, and the AUROCs match the softmax-thresholding,
except for the Vgg19 CNN, for which relevance based models perform signif-
icantly better. On the validation set, models combining activation and attri-
bution achieve the best performance, which substantiates the hypothesis that
attribution methods can improve the self-assessment beyond methods based on
neural activations only. The performance on the ImageNet-A does not sur-
pass random guessing for all models, which is in line with the results for all
proximity-based models.

110 A.3. AFFINITY PROPAGATION

Table A.2: AUROC for the self-assessment models based on the Mean Acti-
vation (MA), the Mean Relevance (MR) and the Weighted Activation (WA)
using Affinity Propagation. The best scores for the self-assessment models are
highlighted.

Network MA MR WA Baseline

Mix Dataset

Vgg19 0.587 0.739 0.740 0.858

Inception v3 0.829 0.769 0.787 0.848

Xception 0.845 0.744 0.782 0.845

ConSemble 0.850 0.798 0.807 0.896

ImageNet 2017 Validation

Vgg19 0.591 0.709 0.716 0.855

Inception v3 0.713 0.734 0.741 0.846

Xception 0.718 0.718 0.731 0.847

ConSemble 0.697 0.740 0.745 0.865

ImageNet-A

Vgg19 0.401 0.411 0.401 0.681

Inception v3 0.426 0.390 0.389 0.582

Xception 0.481 0.435 0.417 0.607

ConSemble 0.424 0.379 0.411 0.591

Appendix B

Random Forrest

In order to demonstrate the flexibility of the proposed framework, we used it to
develop another self-assessment model. It is based on the same features that we
utilized for the proximity-based model but employs a machine learning approach
- namely Random Forrest. This classifier is an ensemble of decision trees, which
is created by bagging, as described in Section 2.3.1.3.

B.1 Training

We trained one Random Forest classifier per class on both correctly and incor-
rectly classified instances of the ImageNet 2017 training set. In order to address
the class-inbalance that arises because the classifiers make correct predictions for
the majority of images, we assigned a higher weight to misclassified instances.
To prevent overfitting, we limited the depth of the trees to three. Each random
forest incorporates 1000 decision trees.

B.2 Results

The evaluation follows the process described in Section 5.3.1. For the sake of
space, the results for the ImageNet 2010 OpenSet subset and the Fooling Images
dataset will be omitted. The aggregated results are listed in Table B.1.

The AUROCs diverge slightly from the scores obtained from the proximity-based
models. Again, the models do not surpass the softmax-thresholding-baseline
but exceed random guessing. However, the self-assessment based on attribution
alone yields the largest AUROC for eight out of twelve cases. Contrary to the
proximity-based models, random forest slightly surpasses random guessing for
the ImageNet-A.

Even though the outcomes differ from the results obtained with the proximity-
based models, they support the conclusion of this thesis.

111

112 B.2. RESULTS

Table B.1: AUROC for the self-assessment models based on the Mean Activation
(MA), the Mean Relevance (MR) and the Weighted Activation (WA) using a
Random Forrest classifier. The best scores for the self-assessment models are
highlighted.

Network MA MR WA Baseline

Mix Dataset

Vgg19 0.445 0.717 0.637 0.858

Inception v3 0.526 0.697 0.448 0.848

Xception 0.656 0.688 0.459 0.845

ConSemble 0.616 0.670 0.482 0.896

ImageNet 2017 Validation

Vgg19 0.587 0.702 0.671 0.855

Inception v3 0.608 0.648 0.500 0.846

Xception 0.731 0.627 0.548 0.847

ConSemble 0.702 0.670 0.603 0.865

ImageNet-A

Vgg19 0.576 0.607 0.553 0.681

Inception v3 0.568 0.500 0.536 0.582

Xception 0.567 0.592 0.589 0.607

ConSemble 0.613 0.458 0.537 0.591

Statement of Authorship

Thesis: Self-Assessment of Visual Recognition Systems based on Attribution

Name: Kirchheim Surname: Konstantin

Date of birth: 12.11.1994 Matriculation no.: 205415

I herewith assure that I wrote the present thesis independently, that the
thesis has not been partially or fully submitted as graded academic work and
that I have used no other means than the ones indicated. I have indicated all
parts of the work in which sources are used according to their wording or to
their meaning. I am aware of the fact that violations of copyright can lead to
injunctive relief and claims for damages of the author as well as a penalty by
the lawenforcement agency.

Magdeburg, October 9, 2024

113

Acronyms

AUROC Area under the ROC. 62, 63, 65, 66, 69, 79, 85, 86, 88, 93, 94, 107,
109–112

CAM Class Activation Map. 15, 26, 32, 90

CDF Commulative Density Function. 43, 44

CNN Convolutional Neural Network. iii, xi, 1–3, 5–8, 11–20, 22, 23, 25–28, 30,
32–34, 36–38, 42, 45, 46, 49–51, 53–57, 62, 65, 66, 69, 71–73, 76, 80, 82,
86–93, 95, 96, 109

DNN Deep Neural Network. 8

FC Fully Connected. 5, 7, 8, 12, 13, 38, 59

FPR False Positive Rate. 61, 65–67, 80

HPO Hyper Parameter Optimization. 46, 93, 95

MoE Mixture of Experts. 11, 96

NCM Nearest Class Mean. 9, 23, 35, 109

PDF Probability Density Function. 42, 43

ROC Receiver Operating Characteristic. ix, x, 61–66, 68–72, 78–83, 108

SVM Support Vector Machine. 8, 22

TPR True Positive Rate. 61

115

	Notation
	Introduction
	Motivation
	Existing Approaches
	Proposed Approach
	Scope of this Thesis
	Structure of this Thesis

	State of the Art
	Convolutional Neural Networks
	Convolutional Layers
	Flattening
	Fully Connected Layers

	Transfer Learning
	Ensembles Methods
	Static
	Dynamic
	Convolutional Ensembles

	Attribution based Explenations
	Occlusion Method
	Saliency Maps
	Class Activation Maps

	Reasons for Image Recognition Failures
	Ordinary Images
	Open-Set Images
	Malicious Images

	Self-Assessment
	Output Based
	Input Based
	Intermediate Based
	Context Based
	Training with an ``Other'' Class

	Attribution based Self-Assessment
	Concept
	Activation
	Attribution

	Framework
	Data Acquisition
	Feature Extraction
	Self-Assessment Model

	Modeling
	Data Acquisition
	Feature Extraction
	Self-Assessment Modell

	Implementation
	Convolutional Neural Networks
	Training Dataset
	Convolutional Base Models
	Convolutional Ensembles

	Self-Assessment
	Framework
	Demo

	Development

	Evaluation
	Datasets
	ImageNet 2017
	ImageNet-A
	Fooling Images
	ImageNet 2010 OpenSet
	Mix Dataset

	Convolutional Neural Networks
	Evaluation Methodology
	Results

	Self Assessment
	Evaluation Methodology
	ImageNet 2017
	ImageNet-A
	Fooling Images
	ImageNet 2010 OpenSet
	Mix Dataset

	Discussion
	Comparison to other Approaches
	Attribution based Self-Assessment
	Comparison of Recognition Systems

	Conclusion
	Summary
	Limitations
	Reproducibility Considerations
	Self-Assessment Model
	Security Considerations

	Future Work
	Future Work on Convolutional Ensembles
	Future Work on Self-Assessment

	Alternative Clustering Algorithms
	K-Means
	Nearest Class Mean
	Affinity Propagation

	Random Forrest
	Training
	Results

	Acronyms

