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Machine learning-based classification algorithms typically operate under assumptions that assert that the underlying data generating distribution Is stationary and draws
from a finite set of categories. In some scenarios, these assumptions might not hold, but identifying violating inputs - here referred to as anomalies - 1s a challenging task.
Recent publications propose deep learning-based approaches that perform anomaly detection and classification jointly by (implicitly) learning a mapping that projects
data points to a lower-dimensional space, such that the images of points of one class reside inside of a hypersphere, while others are mapped outside of it. In this
work, we propose Multi-Class Hypersphere Anomaly Detection (MCHAD), a new hypersphere learning algorithm for anomaly detection in classification settings, as well as a
generalization of existing hypersphere learning methods that allows incorporating example anomalies into the training. Extensive experiments on competitive benchmark
tasks, as well as theoretical arguments, provide evidence for the effectiveness of our method.

Hypersphere Learning

Objective Function:
Z CVLA(?J? X) - 6£A(y7 X)
(x,y)eDn
e Intra-Class Compactness L,: capture fac-
tors of common variance in a class
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Classification:

e Assign class of nearest class center
arg min, ||, — f(x)|| In output space
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Anomaly Detection:

e Threshold distance to nearest class cen-
ter min, ||u, — f(x)|| IN output space

Multi Class Hypersphere Anomaly Detection (MCHAD)

Existing Hypersphere Learning methods:
e Require additional parameters/auxiliary classifier
e Make assumptions on output space Z or centers o
e (Can not integrate examples of anomalies

We propose MCHAD:
e C(lass Centers p, are learable parameters of the model

Inter-Class Variance La(x,y) = log(l 4 Z#y elluy—f<><>H2—lluj—f<X>HZ)

e Intra-Class Compactness Li(x,y) = ||u, — f(X)]|

Generalized Hypersphere Learning

e Include example anomalies
e Introduce loss term Lo to learn factors that discriminate normal from anomalous data
e Applicable to other hypersphere learning methods

Z ala(y,X)+ BLA(Y,x) + Z vLeo(X) (2)
(x,y)eD™m xeDout
Generalized MCHAD:
K
Lo(x) = Z max{0, (ry + my)2 — [[f(x) — NyHQ} (3)
Y

Results [l Ablation Studies

e Fach model trained 21 times with different random seeds
e Performance averaged over 7 outlier datasets

e Observed distance consistent with 1m-
posed learning objectives

Code for all experiments
IS avallable online under
the MIT license. The Im-

e Model can also detect classification er-
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