

# Improving Out-of-Distribution Detection with Markov Logic Networks

Konstantin Kirchheim<sup>1</sup> Frank Ortmeier<sup>1</sup> Otto-von-Guericke University Magdeburg, Germany



## Background

### Out-of-Distribution Detection with Logical Reasoning [1]

Hypothesis: Current detectors rely too much on statistical patterns in neural representations and neglect high-level semantics Idea

- Train DNNs to detect some human-understandable concepts in input
- $\triangleright$  Formulate constraints  $\varphi_i$  on plausible concept combinations for In-Distribution (ID) data, e.g.: Stop-signs are red octagons
- ► Inputs that violate a constraint are marked as Out-of-Distribution (OOD)

#### Limitations

- Strict logic too rigid for real-world applications where statistical associations dominate
- ► Instead, we seek a model in which frequently violated constraints contribute only marginally to the anomaly score

#### Markov Logic Networks (MLN) [3]

- Probabilistic generalization of First-order Logic (FOL)
- Can be seen as templates for large Markov Networks
- $\triangleright$  Each FOL formula  $\varphi_i$  is associated with a weight  $w_i$
- For some input z, a MLN  $\mathcal{M}$  predicts (simplified):

$$P_{\mathcal{M}}(z) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} \varphi_{i}(z)\right) \tag{1}$$

## Detection Approach

#### Standalone Markov Logic Network

- ▶ Train DNNs to approximate interpretation of FOL predicates  $\{\mathcal{P}_n\}_{n=1}^N$
- $\triangleright$  Create constraint set  $\{\varphi_i\}_{i=1}^N$  with these predicates
- ightharpoonup Train MLN weights  $w_i$  by maximizing likelihood on ID training set
- Inference time outlier score:

$$D_{\mathcal{M}}(x) = -\sum_{i} w_{i} \varphi_{i}(\mathbf{x})$$

▶ We do not need to compute partition function Z because  $D_{\mathcal{M}}(\mathbf{x}) \propto P_{\mathcal{M}}(\mathbf{x}) \rightarrow \mathsf{Fast}$ 

## Explainability

We know exactly by what amount a violated rule changed the outlier score







Figure: OOD samples with MSP confidence as predicted by a DNN trained on the GTSRB dataset

#### Combination with other Detectors

- Normalizing outlier scores is necessary
- ▶ For detector  $D: X \to \mathbb{R}$ , fit some distribution to outlier scores for ID data
- $\triangleright$  Estimate survival function  $p_D$  over ID scores to transform outputs into calibrated [0, 1] range
- ► Combined outlier score:  $p_D(\mathbf{x}) \times -\sum_i w_i \varphi_i(\mathbf{x})$





Figure: Approximating survival functions of outlier scores using GED

## Constraint Search

### Learning First-order Logic Constraints from Data

- ► For some datasets, no constraints available *a priori*
- ► Idea: take dataset with ID and OOD examples and optimize set of constraints by solving

$$\max_{\varphi \in \mathscr{P}(\mathcal{T})} \quad \underbrace{\mathbb{E}_{(x_{\text{ID}}, x_{\text{OOD}})} \left[ J(\varphi, x_{\text{ID}}, x_{\text{OOD}}) \right] - \lambda \quad \mathcal{C}(\varphi)}_{\text{Performance}}$$

$$\text{Complexity}$$
(3)

where  $\mathcal{T}$  is the set of possible constraints and  $\mathscr{P}$  is the powerset

Exact computation is intractable

#### Proposed Greedy Algorithm

▶ Add a constraint if it improves performance by at least  $\delta_{min}$ 

```
1: Input: Training set \mathcal{D}_{train}, validation set \mathcal{D}_{val}, baseline performance J_0, rule set \mathcal{T}
  2: Output: Selected constraints \varphi
  3: Initialize \varphi \leftarrow \emptyset
4: Initialize J \leftarrow J_0
   5: for all \varphi_i \in \mathcal{T} do
           \varphi' \leftarrow \varphi \cup \{\varphi_i\}
           Train MLN detector with \varphi' on \mathcal{D}_{\text{train}}
            J' \leftarrow \text{Evaluate detector on } \mathcal{D}_{\text{val}}
           if J' > J + \delta_{\min} then
                 J \leftarrow J'
           end if
13: end for
14: return \varphi
```

## Experiments

#### Traffic Sign Recognition (GTSRB) [4]

- ▶ We have 43 constraints over the predicates: class, shape and color
- ► Statistically significant performance gains, e.g. MLN+Ensemble reduces FPR95 by 37% (relative)
- Across detectors, MLN consistently enhances performance

#### Face Attribute Prediction (CelebA) [2]

Constraint search on CelebA yields the following result:

| $\forall \mathbf{x}$ | $YOUNG(\mathbf{x})$                                                | (4) |
|----------------------|--------------------------------------------------------------------|-----|
| $\forall \mathbf{x}$ | $HEAVY_{MAKEUP}(\mathbf{x}) \Rightarrow GRAY_{HAIR}(\mathbf{x})$   | (5) |
| $\forall \mathbf{x}$ | $WEARING\_LIPSTICK(\mathbf{x}) \Rightarrow GRAY\_HAIR(\mathbf{x})$ | (6) |
| $\forall \mathbf{x}$ | $wearing\_lipstick(\mathbf{x}) \Rightarrow no\_beard(\mathbf{x})$  | (7) |
| $\forall \mathbf{x}$ | $\neg MALE(\mathbf{x}) \Rightarrow NO\_BEARD(\mathbf{x})$          | (8) |
|                      |                                                                    |     |

- ► Since constraints are human-understandable, we can manually curate them
- ► E.g. for MLN+Ensemble, FPR95 is reduced by 20% (relative)
- Overall, combination with MLN improves performance of all tested detectors

## Table: AUROC for different detectors on GTSRB using a pattern-based values in percent, averaged over ten seeds. $\Delta$ indicates the gain relative to the preceding column.

Table: AUROC for different detectors on **CelebA** using a pattern-based baseline, combination with MLN, and a supervised MLN-based detector. All baseline, combination with MLN, and a supervised MLN-based detector. All values in percent, averaged over ten seeds.  $\Delta$  indicates the gain relative to the preceding column.

| Detector    | Baseline | e +MLN                  | +Supervision                         | Detector    | Baseline | +MLN                                  | +Supervision            |
|-------------|----------|-------------------------|--------------------------------------|-------------|----------|---------------------------------------|-------------------------|
| MSP         | 98.96    | 99.60 Δ 0.64            | 99.90 A 0.30                         | MSP         | 48.68    |                                       | 71.10 Δ 10.38           |
|             |          |                         |                                      |             |          |                                       |                         |
| Ensemble    | 99.80    | $99.88 \pm 0.08$        | $99.96 \triangle 0.08$               | Ensemble    | 83.43    | $90.42 \triangle 6.99$                | $97.42 \triangle 7.00$  |
| EBO         | 99.05    | $99.50 \triangle 0.45$  | $99.77 \triangle 0.27$               | EBO         | 45.24    | $73.89 \triangle 28.65$               | $89.89 \Delta 16.00$    |
| DICE        | 99.04    | $99.50 \triangle 0.46$  | $99.77  {\scriptstyle \Delta  0.27}$ | DICE        | 46.83    | 74.98 $\triangle$ 28.16               | 90.31 $\Delta$ 15.32    |
| SHE         | 84.13    | 95.04 $\triangle$ 10.91 | 99.83 A 4.79                         | SHE         | 39.78    | $71.54  {\scriptstyle \Delta  31.76}$ | 89.75 $\triangle$ 18.21 |
| ReAct       | 96.85    | 99.09 $\triangle$ 2.24  | $99.92 \triangle 0.82$               | ReAct       | 44.84    | 72.06 $\triangle$ 27.22               | 89.55 ∆ 17.49           |
| Mahalanobis | 99.23    | $99.72 \triangle 0.49$  | $99.96 \triangle 0.23$               | Mahalanobis | 95.12    | $96.01 \Delta_{0.89}$                 | 97.86 $\Delta$ 1.85     |
| ViM         | 99.47    | 99.80 $\triangle$ 0.33  | 99.96 $\Delta$ 0.16                  | ViM         | 84.94    | $91.75  \vartriangle  6.82$           | 97.12 $\Delta$ 5.37     |

## Ablation Studies

#### **Omitting Rules**

- ► As expected, omitting constraints decreases performance
- Some constraints contribute more to performance than others



Figure: Ablation on constraints for GTSRB

## Constraint Search Regularization

- Regularizing constraint optimization improves results
- No regularization leads to large number of rules
- Strong regularization leads to small number of rules, may degrade generalization



Figure: Number of constraints and performance for varying  $\delta_{\min}$ 

#### Constraint Search Dataset

- Found constraints depend on OOD dataset used for optimization
- Sufficient variability seems beneficial
- Noise only provides a weak signal







Figure: GitHub Repositories

### References

- [1] Konstantin Kirchheim, Tim Gonschorek, and Frank Ortmeier. Out-of-distribution detection with logical reasoning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, page 2122-2131, 2024.
- [2] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, page 3730-3738, 2015.
- [3] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1):107-136, 2006.
- [4] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, 32:323-332, 2012.