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Background Constraint Search Ablation Studies

Out-of-Distribution Detection with Logical Reasoning [1] Learning First-order Logic Constraints from Data Omitting Rules
Hypothesis: Current detectors rely too much on statistical patterns in neural representations and neglect high-level semantics » For some datasets, no constraints available a priori 99.90
Idea > ldea: take dataset with ID and OOD examples and optimize set of constraints by solving g pamestuestesesensteenaeett

» Train DNNs to detect some human-understandable concepts in input rg;(){}) E (xp.x000) (@, XiD, Xoop)] =4 C(¢) (3) < 99.85 [
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» Formulate constraints ¢; on plausible concept combinations for In-Distribution (ID) data, e.g.: Stop-signs are red octagons ’ Performance Complexity = R S S
» Inputs that violate a constraint are marked as Out-of-Distribution (OOD) . . . .
where 7 is the set of possible constraints and &7 is the powerset
Limitations » Exact computation is intractable e : ’ 1 *0 30 0
, , . o . . , X putation Is i > As expected, omitting constraints decreases performance
» Strict logic too rigid for real-world applications where statistical associations dominate , ,
. : . : . : » Some constraints contribute more to performance than
» Instead, we seek a model in which frequently violated constraints contribute only marginally to the anomaly score th g 80
Proposed Greedy Algorithm OHNErs < T ——
Markov Logic Networks (MLN) [3] . S VN
» Add a constraint if it improves performance by at least On;, 60

» Probabilistic generalization of First-order Logic (FOL) —e— MLN+Ensemble

. Input: Training set Dy,in, validation set D, ,|, baseline performance J, rule set 7

—

» Can be seen as templates for large Markov Networks 0 10 20 30 40

2: Output: Selected constraints
» Each FOL formula ¢; is associated with a weight w; N lniti:lize 0 Y Number of Rules
> F : ¢ MLN M dicts (simplified): S ¢ Figure: Ablation on constraints for GTSRB
or some input z, a predicts (simplified): + Initialize J — J;
1 5: for a,Il pi € T do Constraint Search Regularization
Pr(2) = S exp| Y wipi(2) (1) o ¢ eV |
Z I, 7: Train MLN detector with ¢" on Dyain - Ensemble
8: J' « Evaluate detector on D, e Test
. 9: if /> J+ Onin then %8 . Val
Detection Approach o Je % No L,
11: «— / 10 '\’ ® 3 3 2 2 1
: ¢ Q L L] o ® 'Y
: 12: end if » Regularizing constraint optimization improves results 100
Standalone Markov Logic Network 5 s P P
13: end for » No regularization leads to large number of rules o P
> Train DNNs to approximate interpretation of FOL predicates {#,}"_. Ve HESID @ > Strong regularization leads to small number of rules, may g 90 3 ,/' i e
» Create constraint set {(p,-}f.\i1 with these predicates degrade generalization E: 85 —————————————————————————————\—
» Train MLN weights w; by maximizing likelihood on ID training set 80 ’
» Inference time outlier score: 0.00 0.01 0.02 0.03 0.04
Dy(x) == ) wipi(x) 2 : O
,. Experiments | | |
o . Figure: Number of constraints and performance for varying omin
» We do not need to compute partition function Z because Dp((x) o< Pp((x) — Fast
SR Traffic Sign R nition (GTSRB) [4 '
Explainability affic Sign Recognition (GTSRB) [4] Constraint Search Dataset
. . ' ' . 07
We know exactly by what amount a violated rule changed the outlier score > We have 43 constraints over the predicates: class, shape and color
MSP Confidence: 99.8 % MSP Confidence: 9.9 % MSP Confidence: 100.0 % » Statistically significant performance gains, e.g. MLN+Ensemble reduces FPR95 by 37% (relative)
Label: Give Way Label: Priority Road Label: Stop » Across detectors, MLN consistently enhances performance
Shape: Circle Shape: Circle Shape: Triangle
Color: Blue Color: White Color: Red . o
e Face Attribute Prediction (CelebA) [2] » Found constraints depend on OOD dataset used for
Constraint search on CelebA yields the following result: optimization
¥X  YOUNG(X) (4) > Sufﬁaent varlat?lllty seems b.eneﬂaal
VX HEAVY_MAKEUP(X) = GRAY_HAIR(X) (5) > Noise only provides a weak signal
VX WEARING_LIPSTICK(X) = GRAY_HAIR(X) (6)
VX WEARING_LIPSTICK(X) = NO_BEARD(X) (7)
VX —MALE(X) = NO_BEARD(X) (8)
” Dataset
(a) (b) (©) » Since constraints are human-understandable, we can manually curate them
Figure: OOD samples with MSP confidence as predicted by a DNN trained on the GTSRB dataset » E.g. for MLN+Ensemble, FPR95 is reduced by 20% (relative)

» Overall, combination with MLN improves performance of all tested detectors

Combination with other Detectors

» Normalizing outlier scores is necessary
» For detector D : X — R, fit some distribution to outlier scores for ID data

» Estimate survival function pp over ID scores to transform outputs into calibrated [0, 1] range Table: AUROC for different detectors on GTSRB using a pattern-based Table: AUROC for different detectors on CelebA using a pattern-based
> C bined outl; . >N baseline, combination with MLN, and a supervised MLN-based detector. All baseline, combination with MLN, and a supervised MLN-based detector. All
ombined outlier score: pp(x) X — 2.; wig;(x) values in percent, averaged over ten seeds. A indicates the gain relative to values in percent, averaged over ten seeds. A indicates the gain relative to
the preceding column. the preceding column.
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4 > Detector Baseline +MLN +Supervision  Detector Baseline +MLN +Supervision y —
'z 'z (a) MLN-OQOD repository (b) PyTorch-OOD repository
g g) S MSP 98.96 99.60 r0cs 99.90 2030 MSP 48.68 60.72 r1204 7T1.10 A038
2 Figure: GitHub Repositories
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