Improving Out-of-Distribution Detection with Markov Logic Networks Konstantin Kirchheim, Frank Ortmeier

firstname.lastname@ovgu.de

University of Magdeburg, Department of Computer Science

Out-of-distribution (OOD) detection is essential for ensuring the reliability of deep learning models operating in open-world scenarios. Current OOD detectors mainly rely on statistical models to identify unusual patterns in the latent representations of a deep neural network. This work proposes to augment existing OOD detectors with probabilistic reasoning, utilizing Markov logic networks (MLNs). MLNs connect first-order logic with probabilistic reasoning to assign probabilities to inputs based on weighted logical constraints defined over human-understandable concepts, which offers improved explainability. Through extensive experiments on multiple datasets, we demonstrate that MLNs can significantly enhance the performance of a wide range of existing OOD detectors while maintaining computational efficiency. Furthermore, we introduce a simple algorithm for learning logical constraints for OOD detection from a dataset and showcase its effectiveness.

Background: OOD Detection with Logic

Idea

- ► Train DNNs to predict some concepts, formulate constraints on plausible concepts
- Inputs that violate a constraint are marked as OOD

Background: Markov Logic Network (MLN)

- Probabilistic Generalization of First-order Logic (FOL)
- Can be seen as Neuro-Symbolic or templates for large Markov Networks

Problem

- Strict logic too rigid for real-world applications where statistical associations dominate
- ► Rather, we want constraints that are violated often only have slight impact, etc.
- \blacktriangleright Each FOL formula φ_i is associated with a weight w_i
- For some input z, a MLN can predict:

$$P_{\mathcal{M}}(z) = \frac{1}{Z} \exp\left(\sum_{i} w_{i}\varphi_{i}(z)\right)$$

Standalone Markov Logic Network

- ► Train DNNs to approximate interpretation of FOL predicates $\{\mathcal{P}_n\}_{n=1}^N$
- \blacktriangleright Create constraint set $\{\varphi_i\}_{i=1}^N$ with predicates
- \blacktriangleright Train MLN weights w_i by maximizing likelihood on ID training set
- ► Inference time outlier score:

$$D_{\mathcal{M}}(\mathbf{x}) = -\sum_{i} w_{i} \varphi_{i}(\mathbf{x})$$

Explainability: we know exactly by what amount a violated rule changed the outlier score

Combination with other Detectors

- Normalizing outlier scores is necessary
- For detector $D: \mathcal{X} \to \mathbb{R}$, fit some distribution to outlier scores for ID data
- ▶ Then, use survival function p_D , which normalizes scores into the [0, 1] range
- Outlier score = $p_D(\mathbf{x}) \times -\sum_i w_i \varphi_i(\mathbf{x})$

Constraint Search

Traffic Sign Classification (GTSRB)

- ► For some datasets, no prior knowledge available
- Idea: take dataset with ID and OOD examples and optimize set of rules

$$\max_{\varphi \in \mathscr{P}(\mathcal{T})} \underbrace{\mathbb{E}_{(\mathbf{x}_{\mathsf{ID}}, \mathbf{x}_{\mathsf{OOD}})}[J(\varphi, \mathbf{x}_{\mathsf{ID}}, \mathbf{x}_{\mathsf{OOD}})]}_{\mathsf{Performance}} - \lambda \underbrace{C(\varphi)}_{\mathsf{Complexity}}$$

- 1: Input: Training set \mathcal{D}_{train} , validation set \mathcal{D}_{val} , baseline J_0 , rule set \mathcal{T}
- 2: **Output:** Selected constraints φ
- 3: Initialize $\varphi \leftarrow \emptyset$
- 4: Initialize $J \leftarrow J_0$
- 5: for all $\varphi_i \in \mathcal{T}$ do
- $\varphi' \leftarrow \varphi \cup \{\varphi_i\}$
- Train detector with φ' on $\mathcal{D}_{\text{train}}$ 7:
- $J' \leftarrow \mathsf{Evaluate} \text{ on } \mathcal{D}_{\mathsf{val}}$ 8:
- if $J' > J + \delta_{\min}$ then 9:
- $J \leftarrow J'$ 10:
- $\varphi \leftarrow \varphi'$ 11:
- end if 12:
- 13: **end for**
- 14: return φ

- ► We have 43 constraints over the predicates: class, shape and color
- Statistically significant performance gains, reduces FPR95 by 37% (relative)
- Combination with MLN improves performance of all tested detectors

Face Attribute Prediction (CelebA)

Constraint search on CelebA yields the following result:

$orall \mathbf{x}$	young(x)	(1
$orall \mathbf{x}$	$\textbf{heavy_makeup}(\mathbf{x}) \rightarrow \textbf{gray_hair}(\mathbf{x})$	(2
$orall \mathbf{x}$	$wearing_lipstick(\mathbf{x}) \rightarrow gray_hair(\mathbf{x})$	(3
$orall \mathbf{x}$	$wearing_lipstick(\mathbf{x}) \rightarrow no_beard(\mathbf{x})$	(4
$orall \mathbf{x}$	$\neg male(\mathbf{x}) \rightarrow no_beard(\mathbf{x})$	(5

- Since constraints are human-understandable, we can manually curate them
- Combination with MLN improves performance of all tested detectors
- ► e.g.: for MLN+Ensemble, FPR95 is reduced by 20% (relative)

Constraint Search Regularization

Regularizing constraint optimization improves results

Omiting Rules (GTSRB)

Constraint Search Dataset

Rules depend on dataset used for optimization

Some rules are more important then others

Sufficient variability seems beneficial

