
PyTorch-OOD: A Library for Out-of-Distribution
Detection based on PyTorch

K. Kirchheim, M. Filax, F. Ortmeier

Faculty of Computer Science
Otto-von-Guericke University Magdeburg

Germany

August 13, 2022

1/19

Motivation

▶ DNNs SOTA for extremely high dimensional data
▶ Models only work well if input sufficiently similar to training

data (in-distribution)
▶ Prevent errors by rejecting Out-of-Distribution (OOD) inputs

→ Out-of-Distribution Detection

Related Fields:
▶ Anomaly Detection, Novelty Detection
▶ Open Set Recognition
▶ Confidence Estimation

2/19

PyTorch-OOD Goals

Promote Reproducibility
▶ Results can be influenced by implementation details [1]
▶ Open Source: (hopefully) fewer bugs
▶ Implemented algorithms well tested and documented

Accelerate Research
▶ no reimplementation of baseline methods
▶ no dataset setup
▶ less training (pre-trained models)
▶ integrates with frameworks like pytorch-lightning

3/19

Common OOD Detection Workflow

Optimize DNN
min
θ

L(θ;D, f)
Create

Detector Df (·)
Evaluate

Performance

Datasets
D

Detection
Methods

Metrics

DNN
Architectures f

Pre-trained
Weights θ

Objective
Functions L

Stage 1 Stage 2 Stage 3

4/19

DNN Architectures

▶ Some architectures in prominent publications used, but
implementation not available via package [2, 3, 4, 5]

▶ Pre-Trained weights available, but must be downloaded
manually [5, 3]

from pytorch_ood.model import WideResNet

create Pre-Trained Neural Network
model = WideResNet(pretrained="er-cifar10-tune")

5/19

Objective Functions

▶ Unsupervised, supervised
▶ Assumption: OOD samples have label y < 0

→ can be handled automatically

from pytorch_ood.loss import EnergyRegularizedLoss
from pytorch_ood.loss import CrossEntropyLoss
...

xent = CrossEntropyLoss()
regu = EnergyRegularizedLoss(alpha=0.1)

for x, y in data_loader:
output = model(x.cuda())
loss = xent(output, y) + regu(output, y)
loss.backward()
...

6/19

OOD Detectors

▶ Df (x) : Rn → R constructed from DNN
▶ Assumption: Detector predicts outlier scores

from pytorch_ood.detector import NegativeEnergy

create detector
detector = NegativeEnergy(model)
outlier_scores = detector(x.cuda())

outlier(x) =

{
1 if Df (x) > τ

0 else
(1)

7/19

Datasets

▶ OOD Datasets for training (Supervised Objective Functions)
▶ OOD Datasets for testing

Types:
▶ Images (Classification, Segmentation, Unlabeled, Noise)
▶ Text (Classification, Unlabeled)
▶ Audio (Classification)

8/19

OOD Image Dataset Examples

9/19

Putting it all together

from pytorch_ood.model import VisionTransformer
from pytorch_ood.detectors import NegativeEnergy
from pytorch_ood.utils import OODMetrics

Stage 1: create DNN
model = VisionTransformer(pretrained="b16-cifar100-tune")
model.eval().cuda()

Stage 2: create detector
detector = NegativeEnergy(model)

Stage 3: evaluate detector
metrics = OODMetrics()

for x, y in data_loader:
metrics.update(detector(x.cuda()), y)

print(metrics.compute())

10/19

Benchmark: Key Takeaways

▶ Energy-Based OOD [5] works also well for (sequential) text
data

▶ ViT [6] + Pre-Training [7] + Energy-Based OOD works
extremely well

▶ Supervision (i.e. training with example anomalies) [8, 9, 5]
increases performance across all tasks

11/19

Install & Contribute

▶ Git:
https://gitlab.com/kkirchheim/pytorch-ood

▶ Documentation:
https://pytorch-ood.readthedocs.io/

▶ PyPI:
https://pypi.org/project/pytorch-ood/

> pip install pytorch-ood

12/19

https://gitlab.com/kkirchheim/pytorch-ood
https://pytorch-ood.readthedocs.io/
https://pypi.org/project/pytorch-ood/

Thank You

13/19

References I

Xavier Bouthillier, César Laurent, and Pascal Vincent.
Unreproducible research is reproducible.
In International Conference on Machine Learning, pages
725–734, 2019.

Shiyu Liang, Yixuan Li, and R Srikant.
Enhancing the reliability of out-of-distribution image
detection in neural networks.
In 6th International Conference on Learning
Representations, ICLR 2018, 2018.

Dan Hendrycks and Kevin Gimpel.
A baseline for detecting misclassified and out-of-distribution
examples in neural networks.
International Conference on Learning Representations,
2017.

14/19

References II

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.
A simple unified framework for detecting out-of-distribution
samples and adversarial attacks.
Advances in Neural Information Processing Systems, 31,
2018.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li.
Energy-based out-of-distribution detection.
Advances in Neural Information Processing Systems, 33,
2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa
Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al.
An image is worth 16x16 words: Transformers for image
recognition at scale.

15/19

References III
International Conference on Learning Representations,
2021.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika.
Using pre-training can improve model robustness and
uncertainty.
In International Conference on Machine Learning, pages
2712–2721. PMLR, 2019.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich.
Deep anomaly detection with outlier exposure.
In International Conference on Learning Representations,
2018.

Akshay Raj Dhamija, Manuel Günther, and Terrance Boult.
Reducing network agnostophobia.
In Advances in Neural Information Processing Systems,
pages 9157–9168, 2018.

16/19

17/19

18/19

19/19

	Motivation
	Architecture
	Objective Functions
	Detectors
	Datasets
	Benchmarks

