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Motivation

▶ DNNs SOTA for extremely high dimensional data
▶ Models only work well if input sufficiently similar to training

data (in-distribution)
▶ Prevent errors by rejecting Out-of-Distribution (OOD) inputs

→ Out-of-Distribution Detection

Related Fields:
▶ Anomaly Detection, Novelty Detection
▶ Open Set Recognition
▶ Confidence Estimation
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PyTorch-OOD Goals

Promote Reproducibility
▶ Results can be influenced by implementation details [1]
▶ Open Source: (hopefully) fewer bugs
▶ Implemented algorithms well tested and documented

Accelerate Research
▶ no reimplementation of baseline methods
▶ no dataset setup
▶ less training (pre-trained models)
▶ integrates with frameworks like pytorch-lightning
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Common OOD Detection Workflow
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DNN Architectures

▶ Some architectures in prominent publications used, but
implementation not available via package [2, 3, 4, 5]

▶ Pre-Trained weights available, but must be downloaded
manually [5, 3]

from pytorch_ood.model import WideResNet

# create Pre-Trained Neural Network
model = WideResNet(pretrained="er-cifar10-tune")
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Objective Functions

▶ Unsupervised, supervised
▶ Assumption: OOD samples have label y < 0

→ can be handled automatically

from pytorch_ood.loss import EnergyRegularizedLoss
from pytorch_ood.loss import CrossEntropyLoss
# ...

xent = CrossEntropyLoss()
regu = EnergyRegularizedLoss(alpha=0.1)

for x, y in data_loader:
output = model(x.cuda())
loss = xent(output, y) + regu(output, y)
loss.backward()
# ...
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OOD Detectors

▶ Df (x) : Rn → R constructed from DNN
▶ Assumption: Detector predicts outlier scores

from pytorch_ood.detector import NegativeEnergy

# create detector
detector = NegativeEnergy(model)
outlier_scores = detector(x.cuda())

outlier(x) =

{
1 if Df (x) > τ

0 else
(1)
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Datasets

▶ OOD Datasets for training (Supervised Objective Functions)
▶ OOD Datasets for testing

Types:
▶ Images (Classification, Segmentation, Unlabeled, Noise)
▶ Text (Classification, Unlabeled)
▶ Audio (Classification)
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OOD Image Dataset Examples
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Putting it all together

from pytorch_ood.model import VisionTransformer
from pytorch_ood.detectors import NegativeEnergy
from pytorch_ood.utils import OODMetrics

# Stage 1: create DNN
model = VisionTransformer(pretrained="b16-cifar100-tune")
model.eval().cuda()

# Stage 2: create detector
detector = NegativeEnergy(model)

# Stage 3: evaluate detector
metrics = OODMetrics()

for x, y in data_loader:
metrics.update(detector(x.cuda()), y)

print(metrics.compute())
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Benchmark: Key Takeaways

▶ Energy-Based OOD [5] works also well for (sequential) text
data

▶ ViT [6] + Pre-Training [7] + Energy-Based OOD works
extremely well

▶ Supervision (i.e. training with example anomalies) [8, 9, 5]
increases performance across all tasks
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Install & Contribute

▶ Git:
https://gitlab.com/kkirchheim/pytorch-ood

▶ Documentation:
https://pytorch-ood.readthedocs.io/

▶ PyPI:
https://pypi.org/project/pytorch-ood/

> pip install pytorch-ood
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Thank You
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